Open Access
Issue
EPJ Web Conf.
Volume 274, 2022
XVth Quark Confinement and the Hadron Spectrum Conference (ConfXV)
Article Number 01006
Number of page(s) 31
Section 1 - Plenary Presentations
DOI https://doi.org/10.1051/epjconf/202227401006
Published online 22 December 2022
  1. Martin Beneke, Christoph Bobeth, and Robert Szafron. Power-enhanced leading-logarithmic QED corrections to Bqμ+μ. JHEP, 10:232, 2019. [CrossRef] [Google Scholar]
  2. Anastasiia Kozachuk, Dmitri Melikhov, and Nikolai Nikitin. Rare FCNC radiative leptonic Bs,dγl+l decays in the standard model. Phys. Rev. D, 97:053007, Mar 2018. [Google Scholar]
  3. R Aaij et al. First Evidence for the Decay B0sμ+μ. Phys. Rev. Lett., 110(2):021801, 2013. [Google Scholar]
  4. Morad Aaboud et al. Study of the rare decays of B0s and B0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector. JHEP, 04:098, 2019. [Google Scholar]
  5. Albert M Sirunyan et al. Measurement of properties of B0sμ+μ decays and search for B0μ+μ with the CMS experiment. JHEP, 04:188, 2020. [Google Scholar]
  6. Measurement of B0sμ+μ decay properties and search for the B0μμ decay in proton-proton collisions at √ s = 13 TeV. Technical report, CERN, Geneva, 2022. [Google Scholar]
  7. Roel Aaij et al. Measurement of the B0sμ+μ branching fraction and effective lifetime and search for B0μ+μ decays. Phys. Rev. Lett., 118(19):191801, 2017. [Google Scholar]
  8. R. Aaij et al. Analysis of Neutral B-Meson Decays into Two Muons. Phys. Rev. Lett., 128(4):041801, 2022. [Google Scholar]
  9. Combination of the ATLAS, CMS and LHCb results on the B0(s)μ+μ decays. Technical report, CERN, Geneva, 2020. [Google Scholar]
  10. Marzia Bordone, Gino Isidori, and Andrea Pattori. On the Standard Model predictions for RK and RK*. Eur. Phys. J. C, 76(8):440, 2016. [CrossRef] [Google Scholar]
  11. Roel Aaij et al. Test of lepton universality in beauty-quark decays. Nature Phys., 18(3):277–282, 2022. [Google Scholar]
  12. R. Aaij et al. Test of lepton universality with B0K*0+ decays. JHEP, 08:055, 2017. [Google Scholar]
  13. Roel Aaij et al. Tests of lepton universality using B0K0 S + and B+K*++ decays. Phys. Rev. Lett., 128(19):191802, 2022. [Google Scholar]
  14. Roel Aaij et al. Test of lepton universality with Λ0bpK+ decays. JHEP, 05:040, 2020. [Google Scholar]
  15. J. P. Lees et al. Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays BK(*)l+l. Phys. Rev. D, 86:032012, 2012. [Google Scholar]
  16. S. Choudhury et al. Test of lepton flavor universality and search for lepton flavor violation in BKℓℓ decays. JHEP, 03:105, 2021. [Google Scholar]
  17. R. Aaij et al. Differential branching fractions and isospin asymmetries of BK(*)μ+μ decays. JHEP, 06:133, 2014. [Google Scholar]
  18. Roel Aaij et al. Branching Fraction Measurements of the Rare B0sϕμ+μ and B0sf 2 (1525)μ+μ-Decays. Phys. Rev. Lett., 127(15):151801, 2021. [Google Scholar]
  19. Roel Aaij et al. Measurements of the S-wave fraction in B0K+πμ+μ decays and the B0K*(892)0μ+μ differential branching fraction. JHEP, 11:047, 2016. [Erratum: JHEP 04, 142 (2017)]. [Google Scholar]
  20. Roel Aaij et al. Differential branching fraction and angular analysis of Λ0b → Λμ+μ decays. JHEP, 06:115, 2015. [Erratum: JHEP 09, 145 (2018)]. [Google Scholar]
  21. J. Matias, F. Mescia, M. Ramon and J. Virto, “Complete Anatomy of d− > * 0(−> )l+l and its angular distribution,” JHEP 04 (2012), 104, [arXiv:1202.4266 [hep-ph]]. [Google Scholar]
  22. S. Descotes-Genon, J. Matias, M. Ramon and J. Virto, “Implications from clean observables for the binned analysis of B− > Kμ+μ at large recoil,” JHEP 01 (2013), 048, [arXiv:1207.2753 [hep-ph]]. [Google Scholar]
  23. Roel Aaij et al. Measurement of CP-Averaged Observables in the B0K*0μ+μ Decay. Phys. Rev. Lett., 125(1):011802, 2020. [Google Scholar]
  24. S. Wehle et al. Lepton-Flavor-Dependent Angular Analysis of BK*+. Phys. Rev. Lett., 118(11):111801, 2017. [Google Scholar]
  25. ATLAS Collaboration. Angular analysis of B0dK*μ+μ decays in pp collisions at √ s = 8 TeV with the ATLAS detector. Technical Report ATLAS-CONF-2017-023, CERN, Geneva, 4 2017. [Google Scholar]
  26. CMS Collaboration. Measurement of the P1 and P 5 angular parameters of the decay B0K*0μ+μ− in proton-proton collisions at √ s = 8 TeV. 2017. [Google Scholar]
  27. Roel Aaij et al. Angular Analysis of the B+K*+μ+μ Decay. Phys. Rev. Lett., 126(16):161802, 2021. [Google Scholar]
  28. Aoife Bharucha, David M. Straub, and Roman Zwicky. BVℓ+ in the Standard Model from light-cone sum rules. JHEP, 08:098, 2016. [Google Scholar]
  29. Wolfgang Altmannshofer and David M. Straub. New physics in bs transitions after LHC run 1. Eur. Phys. J. C, 75 (8):382, 2015. [Google Scholar]
  30. Sébastien Descotes-Genon, Lars Hofer, Joaquim Matias, and Javier Virto. On the impact of power corrections in the prediction of BK*μ+μ observables. JHEP, 12:125, 2014, [arXiv:1407.8526 [hep-ph]]. [Google Scholar]
  31. Y. Amhis et al. Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021. 6 2022. [Google Scholar]
  32. U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, “New observables in the decay mode d *0l+l,” JHEP 11 (2008), 032, [arXiv:0807.2589 [hep-ph]]. [Google Scholar]
  33. W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub and M. Wick, “Symmetries and Asymmetries of BK*μ+μ Decays in the Standard Model and Beyond,” JHEP 01 (2009), 019, [arXiv:0811.1214 [hep-ph]]. [Google Scholar]
  34. U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, “New physics reach of the decay mode *0+,” JHEP 10 (2010), 056, [arXiv:1005.0571 [hep-ph]]. [Google Scholar]
  35. J. Charles, A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, “Heavy to light form-factors in the final hadron large energy limit: Covariant quark model approach,” Phys. Lett. B 451 (1999), 187, [arXiv: hep-ph/9901378[hep-ph]]. [Google Scholar]
  36. A. Ali, G. F. Giudice and T. Mannel, “Towards a model independent analysis of rare B decays,” Z. Phys. C 67 (1995), 417-432, [arXiv:hep-ph/9408213[hep-ph]]. [Google Scholar]
  37. F. Kruger and J. Matias, “Probing new physics via the transverse amplitudes of B0K* 0(→Kπ+)l+l at large recoil,” Phys. Rev. D 71 (2005), 094009, [arXiv: hep-ph/0502060[hep-ph]]. [Google Scholar]
  38. D. Becirevic and E. Schneider, “On transverse asymmetries in B –> K* l+l-,” Nucl. Phys. B 854 (2012), 321-339, [arXiv:1106.3283 [hep-ph]]. [Google Scholar]
  39. S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, “Optimizing the basis of BKll observables in the full kinematic range,” JHEP 05 (2013), 137, [arXiv:1303.5794 [hep-ph]]. [CrossRef] [Google Scholar]
  40. R. Aaij et al. [LHCb], “Measurement of Form-Factor-Independent Observables in the Decay B0K*0μ+μ,” Phys. Rev. Lett. 111 (2013), 191801, [arXiv:1308.1707 [hep-ex]]. [Google Scholar]
  41. G. Hiller and F. Kruger, “More model-independent analysis of bs processes,” Phys. Rev. D 69 (2004), 074020, [arXiv: hep-ph/0310219[hep-ph]]. [Google Scholar]
  42. S. Descotes-Genon, J. Matias and J. Virto, “Understanding the BK*μ+μ Anomaly,” Phys. Rev. D 88 (2013), 074002, [arXiv:1307.5683 [hep-ph]]. [Google Scholar]
  43. M. Algueró, J. Matias, B. Capdevila and A. Crivellin, “Disentangling lepton flavor universal and lepton flavor universality violating effects in bsℓ+- transitions,” Phys. Rev. D 105 (2022) no.11, 113007, [arXiv:2205.15212 [hep-ph]]. [Google Scholar]
  44. M. Algueró, B. Capdevila, S. Descotes-Genon, J. Matias and M. Novoa-Brunet, “bsℓ+ global fits after RKS and RK*+,” Eur. Phys. J. C 82 (2022) no.4, 326, [arXiv:2104.08921 [hep-ph]]. [CrossRef] [Google Scholar]
  45. B. Capdevila, S. Descotes-Genon, J. Matias and J. Virto, “Assessing lepton-flavour non-universality from BK*ℓℓ angular analyses,” JHEP 10 (2016), 075, [arXiv:1605.03156 [hep-ph]]. [Google Scholar]
  46. T. Hurth, F. Mahmoudi, D. M. Santos and S. Neshatpour, “More Indications for Lepton Nonuniversality in bsℓ+,” Phys. Lett. B 824 (2022), 136838, [arXiv:2104.10058 [hep-ph]]. [Google Scholar]
  47. W. Altmannshofer and P. Stangl, “New physics in rare B decays after Moriond 2021,” Eur. Phys. J. C 81 (2021) no.10, 952, [arXiv:2103.13370 [hep-ph]]. [CrossRef] [PubMed] [Google Scholar]
  48. K. Kowalska, D. Kumar and E. M. Sessolo, “Implications for new physics in bsμμ transitions after recent measurements by Belle and LHCb,” Eur. Phys. J. C 79 (2019) no.10, 840, [arXiv:1903.10932 [hep-ph]]. [CrossRef] [Google Scholar]
  49. T. Blake, S. Meinel and D. van Dyk, “Bayesian Analysis of b+μ Wilson Coefficients using the Full Angular Distribution of Λb → Λ(→ p π)μ+μ Decays,” Phys. Rev. D 101 (2020) no.3, 035023, [arXiv:1912.05811 [hep-ph]]. [Google Scholar]
  50. M. Ciuchini, A. M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini and M. Valli, “On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation,” Eur. Phys. J. C 77 (2017) no.10, 688, [arXiv:1704.05447 [hep-ph]]. [CrossRef] [PubMed] [Google Scholar]
  51. D. London and J. Matias, “B Flavour Anomalies: 2021 Theoretical Status Report,” Ann. Rev. Nucl. Part. Sci. 72 (2022), 37-68, [arXiv:2110.13270 [hep-ph]]. [CrossRef] [Google Scholar]
  52. B. Capdevila, S. Descotes-Genon, L. Hofer and J. Matias, “Hadronic uncertainties in BK*μ+μ: a state-of-the-art analysis,” JHEP 04 (2017), 016, [arXiv:1701.08672 [hep-ph]]. [Google Scholar]
  53. A. Khodjamirian, Th. Mannel, A. A. Pivovarov, and Y. M. Wang. Charm-loop effect in BK(*)+ and BK*γ. JHEP, 09:089, 2010, [arXiv:1006.4945 [hep-ph]]. [Google Scholar]
  54. N. Gubernari, D. van Dyk and J. Virto, “Non-local matrix elements in B(s) → {K(*), ϕ}+,” JHEP 02 (2021), 088, [arXiv:2011.09813 [hep-ph]]. [Google Scholar]
  55. T. Blake, U. Egede, P. Owen, K. A. Petridis and G. Pomery, “An empirical model to determine the hadronic resonance contributions to 0*0μ+μ transitions,” Eur. Phys. J. C 78 (2018) no.6, 453, [arXiv:1709.03921 [hep-ph]]. [CrossRef] [PubMed] [Google Scholar]
  56. C. Bobeth, M. Chrzaszcz, D. van Dyk and J. Virto, “Long-distance effects in BKℓℓ from analyticity,” Eur. Phys. J. C 78 (2018) no.6, 451, [arXiv:1707.07305 [hep-ph]]. [CrossRef] [Google Scholar]
  57. S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, “Global analysis of bsℓℓ anomalies,” JHEP 06 (2016), 092, [arXiv:1510.04239 [hep-ph]]. [Google Scholar]
  58. B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, “Patterns of New Physics in bsℓ+ transitions in the light of recent data,” JHEP 01 (2018), 093, [arXiv:1704.05340 [hep-ph]]. [Google Scholar]
  59. M. Algueró, B. Capdevila, A. Crivellin, S. Descotes-Genon, P. Masjuan, J. Matias, M. Novoa Brunet and J. Virto, “Emerging patterns of New Physics with and without Lepton Flavour Universal contributions,” Eur. Phys. J. C 79 (2019) no.8, 714, [arXiv:1903.09578 [hep-ph]]. [CrossRef] [Google Scholar]
  60. M. Algueró, B. Capdevila, S. Descotes-Genon, P. Masjuan and J. Matias, “Are we overlooking lepton flavour universal new physics in bsℓℓ ?,” Phys. Rev. D 99 (2019) no.7, 075017, [arXiv:1809.08447 [hep-ph]]. [Google Scholar]
  61. B. Capdevila, A. Crivellin, S. Descotes-Genon, L. Hofer and J. Matias, “Searching for New Physics with b+τ processes,” Phys. Rev. Lett. 120 (2018) no.18, 181802, [arXiv:1712.01919 [hep-ph]]. [Google Scholar]
  62. A. Crivellin, C. A. Manzari, M. Alguero and J. Matias, “Combined Explanation of the Z→bb- Forward-Backward Asymmetry, the Cabibbo Angle Anomaly, and τμνν and b→sℓ+- Data,” Phys. Rev. Lett. 127 (2021) no.1, 011801, [arXiv:2010.14504 [hep-ph]]. [Google Scholar]
  63. A. Crivellin and J. Matias, “Beyond the Standard Model with Lepton Flavor Universality Violation,” [arXiv:2204.12175 [hep-ph]]. [Google Scholar]
  64. P.A.M. Dirac, Proc. Roy. Soc. Lond. A 118, 351 (1928) [Google Scholar]
  65. J.S. Schwinger, Phys. Rev. 73, 416 (1948) [Google Scholar]
  66. B. Abi et al. (Muon g-2), Phys. Rev. Lett. 126, 141801 (2021), 2104.03281 [Google Scholar]
  67. G.W. Bennett et al. (Muon g-2), Phys. Rev. D 73, 072003 (2006), hep-ex/0602035 [Google Scholar]
  68. T. Aoyama et al., Phys. Rept. 887, 1 (2020), 2006.04822 [Google Scholar]
  69. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 80, 241 (2020), [Erratum: Eur.Phys.J.C 80, 410 (2020)], 1908.00921 [Google Scholar]
  70. A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 101, 014029 (2020), 1911.00367 [Google Scholar]
  71. G. Colangelo, M. Hoferichter, P. Stoffer, JHEP 02, 006 (2019), 1810.00007 [Google Scholar]
  72. M. Hoferichter, B.L. Hoid, B. Kubis, JHEP 08, 137 (2019), 1907.01556 [Google Scholar]
  73. S. Borsanyi et al., Nature 593, 51 (2021), 2002.12347 [Google Scholar]
  74. A. Gérardin, M. Cé, G. von Hippel, B. Hörz, H.B. Meyer, D. Mohler, K. Ottnad, J. Wilhelm, H. Wittig, Phys. Rev. D 100, 014510 (2019), 1904.03120 [Google Scholar]
  75. C.T.H. Davies et al. (Fermilab Lattice, LATTICE-HPQCD, MILC), Phys. Rev. D 101, 034512 (2020), 1902.04223 [Google Scholar]
  76. D. Giusti, V. Lubicz, G. Martinelli, F. Sanfilippo, S. Simula, Phys. Rev. D 99, 114502 (2019), 1901.10462 [Google Scholar]
  77. T. Blum, P.A. Boyle, V. Gülpers, T. Izubuchi, L. Jin, C. Jung, A. Juttner, C. Lehner, A. Portelli, J.T. Tsang (RBC, UKQCD), Phys. Rev. Lett. 121, 022003 (2018), 1801.07224 [Google Scholar]
  78. S. Borsanyi et al. (Budapest-Marseille-Wuppertal), Phys. Rev. Lett. 121, 022002 (2018), 1711.04980 [Google Scholar]
  79. M. Luscher, P. Weisz, Commun. Math. Phys. 97, 59 (1985), [Erratum: Commun.Math.Phys. 98, 433 (1985)] [Google Scholar]
  80. C. Morningstar, M.J. Peardon, Phys. Rev. D 69, 054501 (2004), hep-lat/0311018 [Google Scholar]
  81. M. Hayakawa, S. Uno, Prog. Theor. Phys. 120, 413 (2008), 0804.2044 [Google Scholar]
  82. D. Bernecker, H.B. Meyer, Eur. Phys. J. A 47, 148 (2011), 1107.4388 [Google Scholar]
  83. M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) [Google Scholar]
  84. S. Borsanyi et al., JHEP 09, 010 (2012), 1203.4469 [Google Scholar]
  85. M.T. Hansen, A. Patella, Phys. Rev. Lett. 123, 172001 (2019), 1904.10010 [Google Scholar]
  86. B. Chakraborty, C.T.H. Davies, P.G. de Oliviera, J. Koponen, G.P. Lepage, R.S. Van de Water, Phys. Rev. D 96, 034516 (2017), 1601.03071 [Google Scholar]
  87. J.J. Sakurai, Annals Phys. 11, 1 (1960) [CrossRef] [Google Scholar]
  88. F. Jegerlehner, R. Szafron, Eur. Phys. J. C 71, 1632 (2011), 1101.2872 [Google Scholar]
  89. H. Neff, N. Eicker, T. Lippert, J.W. Negele, K. Schilling, Phys. Rev. D 64, 114509 (2001), hep-lat/0106016 [Google Scholar]
  90. A. Li et al. (xQCD), Phys. Rev. D 82, 114501 (2010), 1005.5424 [Google Scholar]
  91. G.S. Bali, S. Collins, A. Schafer, Comput. Phys. Commun. 181, 1570 (2010), 0910.3970 [Google Scholar]
  92. T. Blum, T. Izubuchi, E. Shintani, Phys. Rev. D 88, 094503 (2013), 1208.4349 [Google Scholar]
  93. C. Lehner, RBRC Workshop on Lattice Gauge Theories (2016) [Google Scholar]
  94. S. Borsanyi, Z. Fodor, T. Kawanai, S. Krieg, L. Lellouch, R. Malak, K. Miura, K.K. Szabo, C. Torrero, B. Toth, Phys. Rev. D 96, 074507 (2017), 1612.02364 [Google Scholar]
  95. G.M. de Divitiis, R. Frezzotti, V. Lubicz, G. Martinelli, R. Petronzio, G.C. Rossi, F. Sanfilippo, S. Simula, N. Tantalo (RM123), Phys. Rev. D 87, 114505 (2013), 1303.4896 [Google Scholar]
  96. S. Borsanyi et al., Science 347, 1452 (2015), 1406.4088 [Google Scholar]
  97. C. Aubin, T. Blum, C. Tu, M. Golterman, C. Jung, S. Peris, Phys. Rev. D 101, 014503 (2020), 1905.09307 [Google Scholar]
  98. C. Lehner, A.S. Meyer, Phys. Rev. D 101, 074515 (2020), 2003.04177 [Google Scholar]
  99. S. Laher, Time windows from Fnal/Milc/HPQCD, https://indico.cern.ch/event/956699/ [Google Scholar]
  100. D. Giusti, S. Simula, PoS LATTICE2021, 189 (2022), 2111.15329 [Google Scholar]
  101. G. Wang, T. Draper, K.F. Liu, Y.B. Yang (chiQCD) (2022), 2204.01280 [Google Scholar]
  102. C. Aubin, T. Blum, M. Golterman, S. Peris, Phys. Rev. D 106, 054503 (2022), 2204.12256 [Google Scholar]
  103. M. Cè et al. (2022), 2206.06582 [Google Scholar]
  104. G. Gagliardi, Short and intermediate distance contributions to the hadronic vacuum polarization term of the (2022), https://indico.phys.uconn.edu/event/3/contributions/44/ [Google Scholar]
  105. C. Lehner, Update from RBC/UKQCD (20222), https://indico.ph.ed.ac.uk/event/112/contributions/1660/ [Google Scholar]
  106. T. Aaltonen et al. [CDF Collaboration], “High-precision measurement of the W boson mass with the CDF II detector,” Science 376 (2022) no. 6589, 170-176 [Google Scholar]
  107. J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer, and J. Stelzer, “Update of the global electroweak fit and constraints on two-Higgs-doublet models,” Eur. Phys. J. C 78 (2018) no. 8, 675, arXiv:1803.01853 [hep-ph]. [CrossRef] [Google Scholar]
  108. ATLAS Collaboration, M. Aaboud et al., “Measurement of the W-boson mass in pp collisions at √ s = 7 TeV with the ATLAS detector,” Eur. Phys. J. C 78 (2018) no. 2, 110, arXiv:1701.07240 [hep-ex]. [Erratum: Eur.Phys.J.C 78, 898 (2018)]. [CrossRef] [PubMed] [Google Scholar]
  109. LHCb Collaboration, R. Aaij et al., “Measurement of the W boson mass,” JHEP 01 (2022) 036, arXiv:2109.01113 [hep-ex]. [Google Scholar]
  110. B. W. Lee and R. E. Shrock, “Natural Suppression of Symmetry Violation in Gauge Theories: Muon - Lepton and Electron Lepton Number Nonconservation,” Phys. Rev. D 16 (1977) 1444. [Google Scholar]
  111. R. E. Shrock, “General Theory of Weak Leptonic and Semileptonic Decays. 1. Leptonic Pseudoscalar Meson Decays, with Associated Tests For, and Bounds on, Neutrino Masses and Lepton Mixing,” Phys. Rev. D 24 (1981) 1232. [Google Scholar]
  112. R. E. Shrock, “General Theory of Weak Processes Involving Neutrinos. 2. Pure Leptonic Decays,” Phys. Rev. D 24 (1981) 1275. [Google Scholar]
  113. M. Bjørn and M. Trott, “Interpreting W mass measurements in the SMEFT,” Phys. Lett. B 762 (2016) 426–431, arXiv:1606.06502 [hep-ph]. [Google Scholar]
  114. D. A. Bryman and R. Shrock, “Constraints on Sterile Neutrinos in the MeV to GeV Mass Range,” Phys. Rev. D 100 (2019) 073011, arXiv:1909.11198 [hep-ph]. [Google Scholar]
  115. A. Crivellin, M. Hoferichter, and C. A. Manzari, “Fermi Constant from Muon Decay Versus Electroweak Fits and Cabibbo-Kobayashi-Maskawa Unitarity,” Phys. Rev. Lett. 127 (2021) no. 7, 071801, arXiv:2102.02825 [hep-ph]. [Google Scholar]
  116. C.-T. Lu, L. Wu, Y. Wu, and B. Zhu, “Electroweak Precision Fit and New Physics in light of W Boson Mass,” arXiv:2204.03796 [hep-ph]. [Google Scholar]
  117. A. Strumia, “Interpreting electroweak precision data including the W-mass CDF anomaly,” arXiv:2204.04191 [hep-ph]. [Google Scholar]
  118. A. Paul and M. Valli, “Violation of custodial symmetry from W-boson mass measurements,” arXiv:2204.05267 [hep-ph]. [Google Scholar]
  119. P. Asadi, C. Cesarotti, K. Fraser, S. Homiller, and A. Parikh, “Oblique Lessons from the W Mass Measurement at CDF II,” arXiv:2204.05283 [hep-ph]. [Google Scholar]
  120. D. C. Kennedy and B. W. Lynn, “Electroweak Radiative Corrections with an Effective Lagrangian: Four Fermion Processes,” Nucl. Phys. B 322 (1989) 1–54. [Google Scholar]
  121. M. E. Peskin and T. Takeuchi, “New constraint on a strongly interacting higgs sector,”Phys. Rev. Lett. 65 (Aug, 1990) 964–967. [Google Scholar]
  122. R. Barbieri, A. Pomarol, R. Rattazzi, and A. Strumia, “Electroweak symmetry breaking after LEP-1 and LEP-2,” Nucl. Phys. B 703 (2004) 127–146, arXiv: hep-ph/0405040. [Google Scholar]
  123. J. de Blas, M. Pierini, L. Reina, and L. Silvestrini, “Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits,” arXiv:2204.04204 [hep-ph]. [Google Scholar]
  124. J. Fan, L. Li, T. Liu, and K.-F. Lyu, “W-Boson Mass, Electroweak Precision Tests and SMEFT,” arXiv:2204.04805 [hep-ph]. [Google Scholar]
  125. E. Bagnaschi, J. Ellis, M. Madigan, K. Mimasu, V. Sanz, and T. You, “SMEFT Analysis of mW,” arXiv:2204.05260 [hep-ph]. [Google Scholar]
  126. J. Gu, Z. Liu, T. Ma, and J. Shu, “Speculations on the W-Mass Measurement at CDF,” arXiv:2204.05296 [hep-ph]. [Google Scholar]
  127. M. Endo and S. Mishima, “New physics interpretation of W-boson mass anomaly,” arXiv:2204.05965 [hep-ph]. [Google Scholar]
  128. R. Balkin, E. Madge, T. Menzo, G. Perez, Y. Soreq, and J. Zupan, “On the implications of positive W mass shift,” arXiv:2204.05992 [hep-ph]. [Google Scholar]
  129. A. Falkowski, M. González-Alonso, and O. Naviliat-Cuncic, “Comprehensive analysis of beta decays within and beyond the Standard Model,” JHEP 04 (2021) 126, arXiv:2010.13797 [hep-ph]. [Google Scholar]
  130. M. González-Alonso and J. Martin Camalich, “Global Effective-Field-Theory analysis of New-Physics effects in (semi)leptonic kaon decays,” JHEP 12 (2016) 052, arXiv:1605.07114 [hep-ph]. [Google Scholar]
  131. A. Crivellin, F. Kirk, C. A. Manzari, and M. Montull, “Global Electroweak Fit and Vector-Like Leptons in Light of the Cabibbo Angle Anomaly,” JHEP 12 (2020) 166, arXiv:2008.01113 [hep-ph]. [Google Scholar]
  132. M. Blennow, P. Coloma, E. Fernández-Martínez, and M. González-López, “Right-handed neutrinos and the CDF II anomaly,” arXiv:2204.04559 [hep-ph]. [Google Scholar]
  133. V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti and T. Tong, “Beta-decay implications for the W-boson mass anomaly,” Phys. Rev. D 106, no.7, 075001 (2022), arXiv:2204.08440 [hep-ph]. [Google Scholar]
  134. S. Weinberg, “Baryon and Lepton Nonconserving Processes,” Phys. Rev. Lett. 43 (1979) 1566–1570. [Google Scholar]
  135. W. Buchmüller and D. Wyler, “Effective Lagrangian Analysis of New Interactions and Flavor Conservation,” Nucl. Phys. B 268 (1986) 621. [Google Scholar]
  136. B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, “Dimension-Six Terms in the Standard Model Lagrangian,” JHEP 10 (2010) 085, arXiv:1008.4884 [hep-ph]. [Google Scholar]
  137. L. Berthier and M. Trott, “Towards consistent Electroweak Precision Data constraints in the SMEFT,” JHEP 05 (2015) 024, arXiv:1502.02570 [hep-ph]. [Google Scholar]
  138. I. Brivio, S. Dawson, J. de Blas, G. Durieux, P. Savard, A. Denner, A. Freitas, C. Hays, B. Pecjak, and A. Vicini, “Electroweak input parameters,” arXiv:2111.12515 [hep-ph]. [Google Scholar]
  139. J. D. Wells and Z. Zhang, “Effective theories of universal theories,” JHEP 01 (2016) 123, arXiv:1510.08462 [hep-ph]. [Google Scholar]
  140. J. de Blas, M. Ciuchini, E. Franco, A. Goncalves, S. Mishima, M. Pierini, L. Reina, and L. Silvestrini, “Global analysis of electroweak data in the Standard Model,” arXiv:2112.07274 [hep-ph]. [Google Scholar]
  141. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al., “Precision electroweak measurements on the Z resonance,” Phys. Rept. 427 (2006) 257–454, arXiv: hep-ex/0509008. [Google Scholar]
  142. SLD Collaboration, K. Abe et al., “First direct measurement of the parity violating coupling of the Z0 to the s quark,” Phys. Rev. Lett. 85 (2000) 5059–5063, arXiv:hep-ex/0006019. [Google Scholar]
  143. P. Janot and S. Jadach, “Improved Bhabha cross section at LEP and the number of light neutrino species,” Phys. Lett. B 803 (2020) 135319, arXiv:1912.02067 [hep-ph]. [Google Scholar]
  144. Particle Data Group Collaboration, P. Zyla et al., “Review of Particle Physics,” PTEP 2020 (2020) no. 8, 083C01. and 2021 update. [Google Scholar]
  145. R. S. Chivukula and H. Georgi, “Composite Technicolor Standard Model,” Phys. Lett. B 188 (1987) 99–104. [Google Scholar]
  146. G. D’Ambrosio, G. F. Giudice, G. Isidori, and A. Strumia, “Minimal flavor violation: An Effective field theory approach,” Nucl. Phys. B 645 (2002) 155–187, arXiv: hep-ph/0207036. [Google Scholar]
  147. V. Cirigliano, J. Jenkins, and M. González-Alonso, “Semileptonic decays of light quarks beyond the Standard Model,” Nucl. Phys. B 830 (2010) 95–115, arXiv:0908.1754 [hep-ph]. [Google Scholar]
  148. V. Cirigliano, M. Giannotti, and H. Neufeld, “Electromagnetic effects in K(l3) decays,” JHEP 11 (2008) 006, arXiv:0807.4507 [hep-ph]. [Google Scholar]
  149. FlaviaNetWorking Group on Kaon Decays Collaboration, M. Antonelli et al., “An Evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays,” Eur. Phys. J. C 69 (2010) 399–424, arXiv:1005.2323 [hep-ph]. [CrossRef] [Google Scholar]
  150. C.-Y. Seng, M. Gorchtein, H. H. Patel, and M. J. Ramsey-Musolf, “Reduced Hadronic Uncertainty in the Determination of Vud,” Phys. Rev. Lett. 121 (2018) no. 24, 241804, arXiv:1807.10197 [hep-ph]. [Google Scholar]
  151. A. Czarnecki, W. J. Marciano, and A. Sirlin, “Radiative Corrections to Neutron and Nuclear Beta Decays Revisited,” Phys. Rev. D 100 (2019) no. 7, 073008, arXiv:1907.06737 [hep-ph]. [Google Scholar]
  152. J. C. Hardy and I. S. Towner, “Superallowed 0+ → 0+ nuclear β decays: 2020 critical survey, with implications for Vud and CKM unitarity,” Phys. Rev. C 102 (2020) no. 4, 045501. [Google Scholar]
  153. Y. Aoki et al., “FLAG Review 2021,” arXiv:2111.09849 [hep-lat]. [Google Scholar]
  154. C.-Y. Seng, D. Galviz, W. J. Marciano, and U.-G. Meißner, “Update on |Vus| and |Vus/Vud| from semileptonic kaon and pion decays,” Phys. Rev. D 105 (2022) no. 1, 013005, arXiv:2107.14708 [hep-ph]. [Google Scholar]
  155. C.-Y. Seng, D. Galviz, M. Gorchtein, and U.-G. Meißner, “Full K3 radiative corrections and implications on |Vus|,” arXiv:2203.05217 [hep-ph]. [Google Scholar]
  156. T. Bhattacharya, V. Cirigliano, S. D. Cohen, A. Filipuzzi, M. Gonzalez-Alonso, M. L. Graesser, R. Gupta, and H.-W. Lin, “Probing Novel Scalar and Tensor Interactions from (Ultra)Cold Neutrons to the LHC,” Phys. Rev. D 85 (2012) 054512, arXiv:1110.6448 [hep-ph]. [Google Scholar]
  157. V. Cirigliano, M. Gonzalez-Alonso, and M. L. Graesser, “Non-standard Charged Current Interactions: beta decays versus the LHC,” JHEP 02 (2013) 046, arXiv:1210.4553 [hep-ph]. [Google Scholar]
  158. S. Alioli, W. Dekens, M. Girard, and E. Mereghetti, “NLO QCD corrections to SM-EFT dilepton and electroweak Higgs boson production, matched to parton shower in POWHEG,” JHEP 08 (2018) 205, arXiv:1804.07407 [hep-ph]. [Google Scholar]
  159. G. Panico, L. Ricci, and A. Wulzer, “High-energy EFT probes with fully differential Drell-Yan measurements,” JHEP 07 (2021) 086, arXiv:2103.10532 [hep-ph]. [Google Scholar]
  160. T. Kim and A. Martin, “Monolepton production in SMEFT to 𝒪(1/Λ4) and beyond,” arXiv:2203.11976 [hep-ph]. [Google Scholar]
  161. A. Greljo, S. Iranipour, Z. Kassabov, M. Madigan, J. Moore, J. Rojo, M. Ubiali, and C. Voisey, “Parton distributions in the SMEFT from high-energy Drell-Yan tails,” JHEP 07 (2021) 122, arXiv:2104.02723 [hep-ph]. [Google Scholar]
  162. S. Iranipour and M. Ubiali, “A new generation of simultaneous fits to LHC data using deep learning,” JHEP 05 (2022) 032, arXiv:2201.07240 [hep-ph]. [Google Scholar]
  163. R. Boughezal, E. Mereghetti, and F. Petriello, “Dilepton production in the SMEFT at O(1/Λ4),” Phys. Rev. D 104 (2021) no. 9, 095022, arXiv:2106.05337 [hep-ph]. [Google Scholar]
  164. ATLAS Collaboration, G. Aad et al., “Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at √s = 8 TeV with the ATLAS detector,” JHEP 08 (2016) 009, arXiv:1606.01736 [hep-ex]. [Google Scholar]
  165. ATLAS Collaboration, G. Aad et al., “Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector,” JHEP 11 (2020) 005, arXiv:2006.12946 [hep-ex]. [Erratum: JHEP 04, 142 (2021)]. [Google Scholar]
  166. ATLAS Collaboration, G. Aad et al., “Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at √s = 13 TeV with the ATLAS detector,” Phys. Rev. D 100 (2019) no. 5, 052013, arXiv:1906.05609 [hep-ex]. [Google Scholar]
  167. S. Alioli, V. Cirigliano, W. Dekens, J. de Vries, and E. Mereghetti, “Right-handed charged currents in the era of the Large Hadron Collider,” JHEP 05 (2017) 086, arXiv:1703.04751 [hep-ph]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.