Open Access
Issue |
EPJ Web Conf.
Volume 281, 2023
5th International Workshop on Nuclear Data Covariances (CW2022)
|
|
---|---|---|
Article Number | 00011 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/epjconf/202328100011 | |
Published online | 29 March 2023 |
- J. B. Dragt, J. W. M. Dekker, H. Guppelaar, et al., “Methods of adjustment and error evaluation of neutron capture cross sections; application to fission product nuclides”, Nucl. Sci. Eng., 62, 117129 (1977). [Google Scholar]
- T. Takeda, A. Yoshimura, T. Kamei, “Prediction uncertainty evaluation methods of core performance parameters in large liquid-metal fast breeder reactors”, Nucl. Sci. Eng., 103, 157-165 (1989). [Google Scholar]
- E. Bauge, D. A. Rochman, “Cross-observables and cross-isotopes correlations in nuclear data from integral constraints”, EPJ Nucl Sci Technol., 4, 35 (2018). [CrossRef] [EDP Sciences] [Google Scholar]
- G. Palmiotti, M. Salvatores, K. Yokoyama, et al., “Methods and approaches to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data files”, EPJ Web Conf., 239, 13001 (2020). [CrossRef] [EDP Sciences] [Google Scholar]
- M. Salvatores, G. Palmiotti, G. Aliberti, et al., “Methods and Issues for the Combined Use of Integral Experiments and Covariance Data: Results of a NEA International Collaborative Study”, Nuclear Data Sheets, 118, 38-71 (2014). [Google Scholar]
- T. Watanabe, T. Endo, A. Yamamoto, et al., “Cross section adjustment method based on random sampling technique”, J Nucl Sci Technol., 51, 590-599 (2014). [Google Scholar]
- T. Endo, A. Yamamoto, T. Watanabe, “Bias factor method using random sampling technique”, J Nucl Sci Technol., 53, 1494-1501 (2016). [Google Scholar]
- L. Plevnik, G. Žerovnik, “Computer code ENDSAM for random sampling and validation of the resonance parameters covariance matrices of some major nuclear data libraries”, Annals of Nuclear Energy, 94, 510-517 (2016). [CrossRef] [Google Scholar]
- M. Herman, P. Oblozinsky, C.M. Mattoon, et al., “AFCI-2.0 Neutron Cross Section Covariance Library”, Brookhaven National Laboratory, BNL94830-2011 (2011). [Google Scholar]
- R. Vanhanen, “Computing Positive Semidefinite Multigroup Nuclear Data Covariances”, Nucl. Sci. Eng., 179, 411-422 (2015). [Google Scholar]
- N. Higham, “Computing a Nearest Symmetric Positive Semidefinite Matrix”, Linear Algebra Appl., 103, 103-118 (1988). [Google Scholar]
- OECD/NEA, “International Handbook of Evaluated Criticality Safety Benchmark Experiments”, OECD/NEA, NEA/NSC/DOC (95)03 (2016). [Google Scholar]
- C. J. Werner (editor), “MCNP Users Manual Code Version 6.2”, Los Alamos, LA-UR-1729981 (2017). [Google Scholar]
- B. C. Kiedrowski, F. B. Brown, J. L. Conlin, et al., “Whisper: Sensitivity/Uncertainty-Based Computational Methods and Software for Determining Baseline Upper Subcritical Limits”, Nucl. Sci. Eng., 181, 14-47 (2015). [Google Scholar]
- M. B. Chadwick, M. Herman, P. Obložinský, et al., “ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data”, Nucl. Data Sheets, 112, 2887-2996 (2011). [Google Scholar]
- B. L. Broadhead, I. A. Kodeli, “ZZ SCALE6.0/COVA-44G, 44-group cross section covariance matrix library extracted from SCALE6.0”, NEA Data Bank, USCD1236/03 (2011). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.