Open Access
Issue |
EPJ Web Conf.
Volume 287, 2023
EOS Annual Meeting (EOSAM 2023)
|
|
---|---|---|
Article Number | 08013 | |
Number of page(s) | 2 | |
Section | Topical Meeting (TOM) 8- Ultrafast Optics | |
DOI | https://doi.org/10.1051/epjconf/202328708013 | |
Published online | 18 October 2023 |
- H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000). [CrossRef] [Google Scholar]
- E. P. Ippen, “Principles of passive mode locking,” Appl. Phys. B 58, 159 (1994). [CrossRef] [Google Scholar]
- U. Keller, Ultrafast lasers (Springer, 2021). [CrossRef] [Google Scholar]
- T. Fortier and E. Baumann, “20 years of develop-ments in optical frequency comb technology and ap-plications,” Commun. Phys. 2, 153 (2019). [CrossRef] [Google Scholar]
- H. A. Haus, “Theory of mode locking with a fast sat-urable absorber,” J. App. Phys. 46, 3049 (1975). [CrossRef] [Google Scholar]
- H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11, 736 (1975). [CrossRef] [Google Scholar]
- T. Kapitula, J. N. Kutz, and B. Sandstede, “Stability of pulses in the master mode-locking equation,” J. Opt. Soc. Am. B 19, 740 (2002). [CrossRef] [Google Scholar]
- P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photon. 6, 84-92 (2012). [CrossRef] [Google Scholar]
- A. Komarov, H. Leblond, and F.Sanchez, “Quin-tic complex Ginzburg-Landau model for ring fiber lasers,” Phys. Rev. E 72, 025604(R) (2005). [CrossRef] [PubMed] [Google Scholar]
- E. Ding, E. Shlizerman and J. N. Kutz, “General-ized master equation for high-energy passive mode-locking: the sinusoidal Ginzburg–Landau equation,” IEEE J. Quantum Electron. 47, 705 (2011). [CrossRef] [Google Scholar]
- J. Hausen, K. Lüdge, S. V. Gurevich, and J. Javal-oyes, “How carrier memory enters Haus master equation of mode-locking,” Opt. Lett. 45, 6210 (2020). [CrossRef] [PubMed] [Google Scholar]
- M. Nizette and A. G. Vladimirov,“Generalized Haus master equation model for mode-locked class-B lasers,” Phys. Rev. E 104, 014215 (2021). [CrossRef] [PubMed] [Google Scholar]
- A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005). [CrossRef] [Google Scholar]
- D. Ströker, J. Hüve, and F. Mitschke, “Superlumi-nal pulse propagation in an erbium fiber laser,” Appl. Phys. B 69, 323 (1999). [CrossRef] [Google Scholar]
- M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, “Noise-sustained convective structures in nonlinear optics,” Phys. Rev. Lett. 79, 3633 (1997). [CrossRef] [Google Scholar]
- A. M. Perego, B. Garbin, F. Gustave, S. Barland, F. Prati, and G. J. de Valcárcel, “Coherent master equation for laser modelocking,” Nat. Comm. 11, 311 (2020). [CrossRef] [Google Scholar]
- M. Marconi, J. Javaloyes, S. Balle, and M. Giudici, “How lasing localized structures evolve out of pas-sive mode locking,” Phys. Rev. Lett. 112, 223901 (2014). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.