Open Access
Issue
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 03006
Number of page(s) 5
Section Fusion Diagnostics and Technology
DOI https://doi.org/10.1051/epjconf/202328803006
Published online 21 November 2023
  1. J. Dankowski, K. Drozdowicz, A. Kurowski, U. Wiącek, T. Nowak, Y. Zabila, Diamond detectors for spectrometric measurements of fusion plasma products, Diamond and Related Materials, Volume 79, 2017, Pages 88-92, ISSN 0925-9635, DOI. 10.1016/j.diamond.2017.08.016. [CrossRef] [Google Scholar]
  2. B. Esposito, D. Marocco, G. Gandolfo, et al. Progress of Design and Development for the ITER Radial Neutron Camera. J Fusion Energ 41, 22 (2022). DOI. 10.1007/s10894-022-00333-9. [CrossRef] [Google Scholar]
  3. C. Cazzaniga et al., “Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in joint European torus fusion plasmas”, Rev. Sci. Instrum., vol. 85, no. 4, pp. 43506, 2014, DOI. 10.1063/1.4870584. [CrossRef] [PubMed] [Google Scholar]
  4. S. Blagus, D. Sudac, V. Valkovic, 2004. Hidden substances identification by detection of fast neutron induced rays using associated α particle technique. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 213, 434–438. DOI. 10.1016/S0168-583X(03)01586-6. [CrossRef] [Google Scholar]
  5. K. Jordan, T. Gozani, 2007. Pulsed neutron differential die away analysis for detection of nuclear materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 261, 365–368. DOI.10.1016/j.nimb.2007.04.294. [CrossRef] [Google Scholar]
  6. V. Valkovic, 2016. 14 MeV Neutrons Physics and Applications. CRC Press, London. [Google Scholar]
  7. M. Pillon, M. Angelone, A.V. Krasilnikov, 14 MeV neutron spectra measurements with 4% energy resolution using a type IIa diamond detector, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 101, Issue 4, 1995, Pages 473-483, ISSN 0168-583X, DOI. 10.1016/0168583X(95)00507-2. [CrossRef] [Google Scholar]
  8. M. Rebai et al., Diamond detectors for fast neutron measurements at pulsed spallation sources, Journal of Instrumentation, Volume 7, May 2012, DOI 10.1088/1748-0221/7/05/C05015. [CrossRef] [Google Scholar]
  9. V. D. Kovalchuk, V. I. Trotsik, V. D. Kovalchuk, Diamond detector as a fast neutron spectrometer, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 351, Issues 2–3, 1994, Pages 590-591, ISSN 0168-9002, DOI. 10.1016/0168-9002(94)91393-5. [Google Scholar]
  10. M. Angelone, G. Aielli, S. Almaviva, R. Cardarelli, D. Lattanzi, M. Marinelli, 2009. Neutron detectors based upon artificial single crystal diamond. Nuclear Science, IEEE Transactions 56, 2275–2279. DOI. 10.1109/TNS.2009.2025177. [Google Scholar]
  11. R. Mandal, G. Pansare, D. Sengupta, V. Bhoraskar, 2012. Angular distribution of neutron flux around the tritium target of 14 MeV neutron generator. Journal of the Physical Society of Japan 81, 4006–. DOI. 10.1143/JPSJ.81.104006. [CrossRef] [Google Scholar]
  12. D. Rigamonti et al, 2018, Neutron spectroscopy measurements of 14 MeV neutrons at unprecedented energy resolution and implications for deuterium-tritium fusion plasma diagnostics, Measurement Science and Technology, 29, 045502, DOI 10.1088/1361-6501/aaa675. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.