Open Access
Issue
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 10001
Number of page(s) 7
Section Current Trends in Development Radiation Detectors
DOI https://doi.org/10.1051/epjconf/202328810001
Published online 21 November 2023
  1. A. Dutta, P. Chandhran, K. E. Holbert, and E. B. Johnson, “Using decay time to discriminate neutron and gamma ray pulses from a clyc detector, ” in 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2015, pp. 1–7. [Google Scholar]
  2. S. Richards, G. Sykora, and M. Taggart, “High count rate pulse shape discrimination algorithms for neutron scattering facilities, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 989, p. 164946, 2021. [CrossRef] [Google Scholar]
  3. A. Dutta and K. E. Holbert, “Discrimination of neutron-gamma ray pulses with pileup using normalized cross correlation and principal component analysis, ” IEEE Transactions on Nuclear Science, vol. 63, no. 6, pp. 2764–2771, 2016. [CrossRef] [Google Scholar]
  4. C. Fu, A. Di Fulvio, S. Clarke, D. Wentzloff, S. Pozzi, and H. Kim, “Artificial neural network algorithms for pulse shape discrimination and recovery of piled-up pulses in organic scintillators, ” Annals of nuclear energy, vol. 120, pp. 410–421, 2018. [CrossRef] [Google Scholar]
  5. J. Han, J. Zhu, Z. Wang, G. Qu, X. Liu, W. Lin, Z. Xu, Y. Huang, M. Yan, X. Zhang et al., “Pulse characteristics of clyc and piled-up neutron–gamma discrimination using a convolutional neural network, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1028, p. 166328, 2022. [CrossRef] [Google Scholar]
  6. S. Peng, Z. Hua, Q. Wu, J. Han, S. Qian, Z. Wang, Q. Wei, L. Qin, L. Ma, M. Yan et al., “Piled-up neutron-gamma discrimination system for cllb using convolutional neural network, ” Journal of Instrumentation, vol. 17, no. 08, p. T08001, 2022. [CrossRef] [Google Scholar]
  7. E. B. Johnson, C. Whitney, S. Vogel, J. F. Christian, K. Holbert, and P. Chandhran, “High event rate, pulse shape discrimination algorithm for clyc, ” in 2015 IEEE International Symposium on Technologies for Homeland Security (HST). IEEE, 2015, pp. 1–7. [Google Scholar]
  8. X. Wen and A. Enqvist, “Pulse shape discrimination of cs2liycl6: Ce3+ detectors at high count rate based on triangular and trapezoidal filters, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 866, pp. 129–133, 2017. [CrossRef] [Google Scholar]
  9. Z. Zhang, Y. Zhang, C. Hu, S. Feng, J. Zhu, B. Liao, D. Liu, Q. Zhou, and H. Wang, “Detection and discrimination of α-and β-radiation with plastic scintillators based on pulse shape discrimination, ” Journal of Instrumentation, vol. 15, no. 04, p. P04008, 2020. [CrossRef] [Google Scholar]
  10. J. Polack, M. Flaska, A. Enqvist, C. Sosa, C. Lawrence, and S. Pozzi, “An algorithm for charge-integration, pulse-shape discrimination and estimation of neutron/photon misclassification in organic scintillators, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 795, pp. 253–267, 2015. [CrossRef] [Google Scholar]
  11. R. M. French, M. Thevenin, M. Hamel, and E. Montbarbon, “A histogram-difference method for neutron/gamma discrimination using liquid and plastic scintillators, ” IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2423–2432, 2017. [Google Scholar]
  12. M. Hammad, H. Kasban, R. Fikry, M. I. Dessouky, O. Zahran, S. M. Elaraby, and F. E. A. El-Samie, “Digital pulse processing algorithm for neutron and gamma rays discrimination, ” Analog Integrated Circuits and Signal Processing, vol. 101, pp. 475–487, 2019. [CrossRef] [Google Scholar]
  13. H. Singh and R. Mehra, “Discrete wavelet transform method for high flux ngamma discrimination with liquid scintillators, ” IEEE Transactions on Nuclear Science, vol. 64, no. 7, pp. 1927–1933, 2017. [CrossRef] [Google Scholar]
  14. B. Blair, C. Chen, A. Glenn, A. Kaplan, J. Ruz, L. Simms, and R. Wurtz, “Gaussian mixture models as automated particle classifiers for fast neutron detectors, ” Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 12, no. 6, pp. 479–488, 2019. [CrossRef] [Google Scholar]
  15. M. Gelfusa, R. Rossi, M. Lungaroni, F. Belli, L. Spolladore, I. Wyss, P. Gaudio, A. Murari, and J. Contributors, “Advanced pulse shape discrimination via machine learning for applications in thermonuclear fusion, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 974, p. 164198, 2020. [CrossRef] [Google Scholar]
  16. E. Doucet, T. Brown, P. Chowdhury, C. Lister, C. Morse, P. Bender, and A. Rogers, “Machine learning n/γ discrimination in clyc scintillators, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 954, p. 161201, 2020. [CrossRef] [Google Scholar]
  17. T. Tambouratzis, D. Chernikova, and I. Pzsit, “Pulse shape discrimination of neutrons and gamma rays using kohonen artificial neural networks, ” Journal of Artificial Intelligence and Soft Computing Research, vol. 3, no. 2, pp. 77–88, 2013. [CrossRef] [Google Scholar]
  18. J. Griffiths, S. Kleinegesse, D. Saunders, R. Taylor, and A. Vacheret, “Pulse shape discrimination and exploration of scintillation signals using convolutional neural networks, ” Machine Learning: Science and Technology, vol. 1, no. 4, p. 045022, 2020. [CrossRef] [Google Scholar]
  19. M. Astrain, M. Ruiz, A. V. Stephen, R. Sarwar, A. Carpen˜o, S. Esquembri, A. Murari, F. Belli, and M. Riva, “Real-time implementation of the neutron/gamma discrimination in an fpga-based daq mtca platform using a convolutional neural network, ” IEEE Transactions on Nuclear Science, vol. 68, no. 8, pp. 2173–2178, 2021. [CrossRef] [Google Scholar]
  20. X. Fabian, G. Baulieu, L. Ducroux, O. Ste´zowski, A. Boujrad, E. Cle´ment, S. Coudert, G. de France, N. Erduran, S. Ertu¨rk et al., “Artificial neural networks for neutron/γ discrimination in the neutron detectors of neda, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 986, p. 164750, 2021. [CrossRef] [Google Scholar]
  21. N. M. Michels, A. J. Jinia, S. D. Clarke, H.-S. Kim, S. A. Pozzi, and D. D. Wentzloff, “Real-time classification of radiation pulses with piledup recovery using an fpga-based artificial neural network, ” IEEE Access, 2023. [Google Scholar]
  22. N. Shlezinger, J. Whang, Y. C. Eldar, and A. G. Dimakis, “Model-based deep learning, ” Proc. IEEE, vol. 111, no. 5, pp. 465–499, 2023. [CrossRef] [Google Scholar]
  23. N. Shlezinger, Y. C. Eldar, and S. P. Boyd, “Model-based deep learning: On the intersection of deep learning and optimization, ” IEEE Access, vol. 10, pp. 115384–115398, 2022. [CrossRef] [Google Scholar]
  24. N. Shlezinger and Y. C. Eldar, “Model-Based Deep Learning, ” Foundations and Trends® in Signal Processing, vol. 17, no. 4, pp. 291–416, 2023. [CrossRef] [Google Scholar]
  25. B. S. Budden, A. J. Couture, L. C. Stonehill, A. V. Klimenko, J. R. Terry, and J. O. Perry, “Analysis of cs 2 liycl 6: Ce 3+(clyc) waveforms as read out by solid state photomultipliers, ” in 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). IEEE, 2012, pp. 347–350. [Google Scholar]
  26. B. S. Budden, L. C. Stonehill, J. R. Terry, A. V. Klimenko, and J. O. Perry, “Characterization and investigation of the thermal dependence of cs2liycl6 : ce3+ (clyc) waveforms, ” IEEE Transactions on Nuclear Science, vol. 60, no. 2, pp. 946–951, 2012. [Google Scholar]
  27. N. D’olympia, P. Chowdhury, C. Lister, J. Glodo, R. Hawrami, K. Shah, and U. Shirwadkar, “Pulse-shape analysis of clyc for thermal neutrons, fast neutrons, and gamma-rays, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 714, pp. 121–127, 2013. [CrossRef] [Google Scholar]
  28. N. Dinar, D. Celeste, M. Silari, V. Varoli, and A. Fazzi, “Pulse shape discrimination of clyc scintillator coupled with a large sipm array, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 935, pp. 35–39, 2019. [CrossRef] [Google Scholar]
  29. T. Huang and Z. Zhang, “Characterization of 1-inch clyc scintillator coupled with 8 8 sipm array, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 999, p. 165225, 2021. [CrossRef] [Google Scholar]
  30. C. Wang, X. Sun, J. Yu, J. Lv, Y. Deng, J. Li, H. Jiang, L. Luo, X. Fan, F. Gu et al., “n/γ discrimination of sipm array-based clyc detector, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1036, p. 166870, 2022. [CrossRef] [Google Scholar]
  31. R. W. Engstrom, Photomultiplier handbook. RCA Corporation, 1980. [Google Scholar]
  32. N. Ding, Y. Qin, G. Yang, F. Wei, Z. Yang, Y. Su, S. Hu, Y. Chen, C.-M. Chan, W. Chen et al., “Parameter-efficient fine-tuning of largescale pre-trained language models, ” Nature Machine Intelligence, vol. 5, no. 3, pp. 220–235, 2023. [CrossRef] [Google Scholar]
  33. V. K. Chauhan, J. Zhou, P. Lu, S. Molaei, and D. A. Clifton, “A brief review of hypernetworks in deep learning, ” arXiv preprint arXiv:2306.06955, 2023. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.