Open Access
Issue
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 10005
Number of page(s) 8
Section Current Trends in Development Radiation Detectors
DOI https://doi.org/10.1051/epjconf/202328810005
Published online 21 November 2023
  1. A. Dutta and K. E. Holbert, “Discrimination of neutron-gamma ray pulses with pileup using normalized cross correlation and principal component analysis, ” IEEE Transactions on Nuclear Science, vol. 63, no. 6, pp. 2764–2771, 2016. [CrossRef] [Google Scholar]
  2. C. Fu, A. Di Fulvio, S. Clarke, D. Wentzloff, S. Pozzi, and H. Kim, “Artificial neural network algorithms for pulse shape discrimination and recovery of piled-up pulses in organic scintillators, ” Annals of nuclear energy, vol. 120, pp. 410–421, 2018. [CrossRef] [Google Scholar]
  3. A. Dutta, P. Chandhran, K. E. Holbert, and E. B. Johnson, “Using decay time to discriminate neutron and gamma ray pulses from a clyc detector, ” in 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2015, pp. 1–7. [Google Scholar]
  4. S. Richards, G. Sykora, and M. Taggart, “High count rate pulse shape discrimination algorithms for neutron scattering facilities, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 989, p. 164946, 2021. [CrossRef] [Google Scholar]
  5. J. Polack, M. Flaska, A. Enqvist, C. Sosa, C. Lawrence, and S. Pozzi, “An algorithm for charge-integration, pulse-shape discrimination and estimation of neutron/photon misclassification in organic scintillators, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 795, pp. 253–267, 2015. [CrossRef] [Google Scholar]
  6. M. Nakhostin, “A general-purpose digital pulse shape discrimination algorithm, ” IEEE Transactions on Nuclear Science, vol. 66, no. 5, pp. 838–845, 2019. [CrossRef] [Google Scholar]
  7. R. M. French, M. Thevenin, M. Hamel, and E. Montbarbon, “A histogram-difference method for neutron/gamma discrimination using liquid and plastic scintillators, ” IEEE Transactions on Nuclear Science, vol. 64, no. 8, pp. 2423–2432, 2017. [Google Scholar]
  8. M. Safari, F. A. Davani, H. Afarideh, S. Jamili, and E. Bayat, “Discrete fourier transform method for discrimination of digital scintillation pulses in mixed neutron-gamma fields, ” IEEE transactions on nuclear science, vol. 63, no. 1, pp. 325–332, 2016. [CrossRef] [Google Scholar]
  9. H. Singh and R. Mehra, “Discrete wavelet transform method for high flux n γ discrimination with liquid scintillators, ” IEEE Transactions on Nuclear Science, vol. 64, no. 7, pp. 1927–1933, 2017. [CrossRef] [Google Scholar]
  10. M. Hammad, H. Kasban, R. Fikry, M. I. Dessouky, O. Zahran, S. M. Elaraby, and F. E. A. El-Samie, “Digital pulse processing algorithm for neutron and gamma rays discrimination, ” Analog Integrated Circuits and Signal Processing, vol. 101, pp. 475–487, 2019. [CrossRef] [Google Scholar]
  11. B. Blair, C. Chen, A. Glenn, A. Kaplan, J. Ruz, L. Simms, and R. Wurtz, “Gaussian mixture models as automated particle classifiers for fast neutron detectors, ” Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 12, no. 6, pp. 479–488, 2019. [CrossRef] [Google Scholar]
  12. A. Glenn, Q. Cheng, A. D. Kaplan, and R. Wurtz, “Pulse pileup rejection methods using a two-component gaussian mixture model for fast neutron detection with pulse shape discriminating scintillator, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 988, p. 164905, 2021. [CrossRef] [Google Scholar]
  13. M. Gelfusa, R. Rossi, M. Lungaroni, F. Belli, L. Spolladore, I. Wyss, P. Gaudio, A. Murari, and J. Contributors, “Advanced pulse shape discrimination via machine learning for applications in thermonuclear fusion, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 974, p. 164198, 2020. [CrossRef] [Google Scholar]
  14. E. Doucet, T. Brown, P. Chowdhury, C. Lister, C. Morse, P. Bender, and A. Rogers, “Machine learning n/γ discrimination in clyc scintillators, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 954, p. 161201, 2020. [CrossRef] [Google Scholar]
  15. T. Tambouratzis, D. Chernikova, and I. Pzsit, “Pulse shape discrimination of neutrons and gamma rays using kohonen artificial neural networks, ” Journal of Artificial Intelligence and Soft Computing Research, vol. 3, no. 2, pp. 77–88, 2013. [CrossRef] [Google Scholar]
  16. J. Griffiths, S. Kleinegesse, D. Saunders, R. Taylor, and A. Vacheret, “Pulse shape discrimination and exploration of scintillation signals using convolutional neural networks, ” Machine Learning: Science and Technology, vol. 1, no. 4, p. 045022, 2020. [CrossRef] [Google Scholar]
  17. M. Astrain, M. Ruiz, A. V. Stephen, R. Sarwar, A. Carpen˜o, S. Esquembri, A. Murari, F. Belli, and M. Riva, “Real-time implementation of the neutron/gamma discrimination in an fpga-based daq mtca platform using a convolutional neural network, ” IEEE Transactions on Nuclear Science, vol. 68, no. 8, pp. 2173–2178, 2021. [CrossRef] [Google Scholar]
  18. X. Fabian, G. Baulieu, L. Ducroux, O. Ste´zowski, A. Boujrad, E. Cle´ment, S. Coudert, G. de France, N. Erduran, S. Ertu¨rk et al., “Artificial neural networks for neutron/γ discrimination in the neutron detectors of neda, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 986, p. 164750, 2021. [CrossRef] [Google Scholar]
  19. J. Han, J. Zhu, Z. Wang, G. Qu, X. Liu, W. Lin, Z. Xu, Y. Huang, M. Yan, X. Zhang et al., “Pulse characteristics of clyc and piled-up neutron–gamma discrimination using a convolutional neural network, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1028, p. 166328, 2022. [CrossRef] [Google Scholar]
  20. S. Peng, Z. Hua, Q. Wu, J. Han, S. Qian, Z. Wang, Q. Wei, L. Qin, L. Ma, M. Yan et al., “Piled-up neutron-gamma discrimination system for cllb using convolutional neural network, ” Journal of Instrumentation, vol. 17, no. 08, p. T08001, 2022. [CrossRef] [Google Scholar]
  21. M. Flaska and S. A. Pozzi, “Identification of shielded neutron sources with the liquid scintillator bc-501a using a digital pulse shape discrimination method, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 577, no. 3, pp. 654–663, 2007. [CrossRef] [Google Scholar]
  22. M. Nakhostin and P. Walker, “Application of digital zero-crossing technique for neutron–gamma discrimination in liquid organic scintillation detectors, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 621, no. 1-3, pp. 498–501, 2010. [CrossRef] [Google Scholar]
  23. D. Cester, M. Lunardon, G. Nebbia, L. Stevanato, G. Viesti, S. Petrucci, and C. Tintori, “Pulse shape discrimination with fast digitizers, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 748, pp. 33–38, 2014. [CrossRef] [Google Scholar]
  24. G. J. Sykora, E. M. Schooneveld, and N. J. Rhodes, “Zno: Zn/6lif scintillator—a low afterglow alternative to zns: Ag/6lif for thermal neutron detection, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 883, pp. 75–82, 2018. [CrossRef] [Google Scholar]
  25. M. J. Balmer, K. A. Gamage, and G. C. Taylor, “Comparative analysis of pulse shape discrimination methods in a 6li loaded plastic scintillator, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 788, pp. 146–153, 2015. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.