Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 06011
Number of page(s) 8
Section Physics Analysis Tools
DOI https://doi.org/10.1051/epjconf/202429506011
Published online 06 May 2024
  1. G. Benelli, B. Bozsogi, A. Pfeiffer, D. Piparo, V. Zemleris, Measuring CMS software performance in the first years of LHC collisions, in 2011 IEEE Nuclear Science Symposium Conference Record (2011), pp. 108–112 [Google Scholar]
  2. ATLAS Collaboration, Athena (2019), https://doi.org/10.5281/zenodo. 2641997 [Google Scholar]
  3. R. Brun, F. Rademakers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 389, 81 (1997), New Computing Techniques in Physics Research V [CrossRef] [Google Scholar]
  4. D. Piparo, P. Canal, E. Guiraud, X. Valls Pla, G. Ganis, G. Amadio, A. Naumann, E. Tejedor Saavedra, EPJ Web Conf. 214, 06029 (2019) [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. V.E. Padulano, I.D. Kabadzhov, E. Tejedor Saavedra, E. Guiraud, P. Alonso-Jordá, Journal of Grid Computing 21, 9 (2023) [CrossRef] [Google Scholar]
  6. L. Gray, N. Smith, B. Tovar, Y.M.E. Chen, A. Novak, J. Chakraborty, P. Fackeldey, N. Hartmann, G. Watts, D. Thain et al., CoffeaTeam/coffea: v2023.6.0.rc2 (2023), https://doi.org/10.5281/zenodo.8147186 [Google Scholar]
  7. CMS, Tools for working with NanoAOD, https://github.com/cms-nanoAOD/ nanoAOD-tools (2022), accessed on 2023-09-08 [Google Scholar]
  8. H.B. Prosper, S. Sekmen, G. Unel, Analysis Description Language: A DSL for HEP Analysis, https://arxiv.org/abs/2203.09886 (2022) [Google Scholar]
  9. ROOT Team, RDataFrame tutorials, https://root.cern.ch/doc/master/group__tutorial dataframe.html (2023), accessed on 2023-09-08 [Google Scholar]
  10. Various Authors, CMS Open Data analysis examples and tools., https://github. com/cms-opendata-analyses (2023), accessed on 2023-09-08 [Google Scholar]
  11. A. Held, O. Shadura, PoS ICHEP2022, 235 (2022) [Google Scholar]
  12. A. Held, O. Shadura, M. Feickert, J. Chakraborty, M. Proffitt, K. Choi, A. Novak, D. Koch, M. Adamec, S. Chopra et al., iris-hep/analysis-grand-challenge: v0.1.0 (2022), https://doi.org/10.5281/zenodo.7274937 [Google Scholar]
  13. Analysis Grand Challenge Team, Versions description, https://agc.readthedocs. io/en/latest/versionsdescription.html (2023), accessed on 2023-09-08 [Google Scholar]
  14. J. Pivarski, I. Osborne, I. Ifrim, H. Schreiner, A. Hollands, A. Biswas, P. Das, S. Roy Choudhury, N. Smith, M. Goyal, Awkward array (2023), https://doi.org/10.5281/zenodo.8317185 [Google Scholar]
  15. V. Vasilev, P. Canal, A. Naumann, P. Russo, Journal of Physics: Conference Series 396, 052071 (2012) [CrossRef] [Google Scholar]
  16. A. Falko, Analysis Grand Challenge task implementation with RDataFrame, https://github.com/andriiknu/RDF (2023), accessed on 2023-09-08 [Google Scholar]
  17. S.K. Lam, A. Pitrou, S. Seibert, Numba: A LLVM-Based Python JIT Compiler, in Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (Association for Computing Machinery, New York, NY, USA, 2015), LLVM ’15, ISBN 9781450340052, https://doi.org/10.1145/2833157.2833162 [Google Scholar]
  18. C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith et al., Nature 585, 357 (2020) [NASA ADS] [CrossRef] [Google Scholar]
  19. V.E. Padulano, Demonstration of the Analysis Grand Challenge task with a Pythonic RDataFrame API, https://github.com/vepadulano/ analysis-grand-challenge/tree/rdf-agc-chep-2023 (2023), accessed on 2023-09-08 [Google Scholar]
  20. E. Gazzarrini, E. Garcia, D. Gosein, A.V. Moya, A. Kounelis, X. Espinal, The virtual research environment: towards a comprehensive analysis platform, https://arxiv. org/abs/2305.10166 (2023), 2305.10166 [Google Scholar]
  21. M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado, D. Cameron, D. Christidis, D. Ciangottini, G. Dimitrov, M. Elsing et al., Computing and Software for Big Science 3, 11 (2019) [CrossRef] [Google Scholar]
  22. T. Šimko, L. Heinrich, H. Hirvonsalo, D. Kousidis, D. Rodríguez, REANA: A system for reusable research data analyses, in EPJ web of conferences (EDP Sciences, 2019), Vol. 214, p. 06034 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.