Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 07013
Number of page(s) 8
Section Facilities and Virtualization
DOI https://doi.org/10.1051/epjconf/202429507013
Published online 06 May 2024
  1. J. Billard, et al. Rept. Prog. Phys. 85, no.5, 056201 (2022) doi:10.1088/1361-6633/ac5754 [arXiv:2104.07634 [hep-ex]]. [CrossRef] [Google Scholar]
  2. Pallavicini, M. Solar neutrinos: experimental review and prospectives. Journal Of Physics: Conference Series. 598, 012007 (2015,3), https://dx.doi.org/10.1088/1742-6596/598/1/012007 [CrossRef] [Google Scholar]
  3. Amaro, F., et al. The CYGNO Experiment. Instruments. 6 (2022), https://doi.org/10.3390/instruments6010006 [Google Scholar]
  4. Sauli, F. GEM: A new concept for electron amplification in gas detectors. Nuclear Instruments And Methods In Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment. 386, 531-534 (1997), https://doi.org/10.1016/S0168-9002(96)01172-2 [Google Scholar]
  5. Antochi, V., et al. A GEM-based optically readout time projection chamber for charged particle tracking. ArXiv. (2020) [Google Scholar]
  6. Mazzitelli, G., et al. Technical Design Report - TDR CYGNO-04/INITIUM. (2023,2), https://doi.org/10.15161/oar.it/76967 [Google Scholar]
  7. Mazzitelli, G., et al. D. 50 litres TPC with sCMOS-based optical readout for the CYGNO project. Nuclear Instruments And Methods In Physics Research Section A: Accelerators, Spectrometers, Detectors And Associated Equipment. 1045 pp. 167584 (2023), https://doi.org/10.1016/j.nima.2022.167584 [Google Scholar]
  8. Baracchini, E.„ et al. A density-based clustering algorithm for the CYGNO data analysis. Journal Of Instrumentation. 15, T12003 (2020,12), https://dx.doi.org/10.1088/1748-0221/15/12/T12003 [CrossRef] [Google Scholar]
  9. Amaro, F., et al. iDBSCAN to detect cosmic-ray tracks for the CYGNO experiment. Measurement Science And Technology. 34, 125024 (2023,9), https://dx.doi.org/10.1088/1361-6501/acf402 [CrossRef] [Google Scholar]
  10. Amaro, F., et al. Exploiting INFN-Cloud to implement a Cloud solution to support the CYGNO computing model. https://doi.org/10.22323/1.415.0021 [Google Scholar]
  11. INDIGO-DataCloud, Dynamic On Demand Analysis Service (DODAS), https://web.infn.it/dodas/ [Google Scholar]
  12. PSI & TRIUMF, MIDAS modern data acquisition, https://daq00.triumf.ca/MidasWiki/ [Google Scholar]
  13. Barisists M et al. Rucio: Scientific Data Management, https://link.springer.com/article/10.1007/s41781-019-0026-3 [Google Scholar]
  14. ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, https://www.supercomputing-icsc.it/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.