Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 09016
Number of page(s) 8
Section Artificial Intelligence and Machine Learning
DOI https://doi.org/10.1051/epjconf/202429509016
Published online 06 May 2024
  1. H. Qu, L. Gouskos, Physical Review D 101 (2020) [Google Scholar]
  2. V. Mikuni, F. Canelli, The European Physical Journal Plus 135 (2020) [CrossRef] [Google Scholar]
  3. P.T. Komiske, E.M. Metodiev, J. Thaler, Journal of High Energy Physics 2019 (2019) [CrossRef] [Google Scholar]
  4. C. Shimmin, Particle convolution for high energy physics (2021), 2107.02908 [Google Scholar]
  5. Tech. rep., CERN, Geneva (2020), all figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-014, https://cds.cern.ch/record/2718948 [Google Scholar]
  6. D. Murnane, Graph structure from point clouds: Geometric attention is all you need (2023), 2307.16662 [Google Scholar]
  7. K. Goto, T. Suehara, T. Yoshioka, M. Kurata, H. Nagahara, Y. Nakashima, N. Takemura, M. Iwasaki, Nuclear Instruments and Methods in Physics Research Section A: Acceler-ators, Spectrometers, Detectors and Associated Equipment 1047, 167836 (2023) [Google Scholar]
  8. Tech. rep., CERN, Geneva (2017), all figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003, http://cds.cern.ch/record/2255226 [Google Scholar]
  9. J.S.H. Lee, I. Park, I.J. Watson, S. Yang, Journal of the Korean Physical Society 74, 219 (2019) [CrossRef] [Google Scholar]
  10. R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M. Bass, F. Bay et al., Journal of Instrumentation 12, P03011 (2017) [CrossRef] [Google Scholar]
  11. J. Shlomi, P. Battaglia, J.R. Vlimant, Machine Learning: Science and Technology 2, 021001 (2021) [CrossRef] [Google Scholar]
  12. S. Thais, P. Calafiura, G. Chachamis, G. DeZoort, J. Duarte, S. Ganguly, M. Kagan, D. Murnane, M.S. Neubauer, K. Terao, Graph neural networks in particle physics: Implementations, innovations, and challenges (2022), 2203.12852 [Google Scholar]
  13. S.R. Qasim, J. Kieseler, Y. Iiyama, M. Pierini, The European Physical Journal C 79 (2019) [CrossRef] [Google Scholar]
  14. N. Choma, D. Murnane, X. Ju, P. Calafiura, S. Conlon, S. Farrell, Prabhat, G. Cerati, L. Gray, T. Klijnsma et al., Track seeding and labelling with embedded-space graph neural networks (2020), 2007.00149 [Google Scholar]
  15. S. Caillou, P. Calafiura, S.A. Farrell, X. Ju, D.T. Murnane, C. Rougier, J. Stark, A. Vallier (ATLAS), Tech. rep., CERN, Geneva (2022), https://cds.cern.ch/record/ 2815578 [Google Scholar]
  16. A. Elabd, V. Razavimaleki, S.Y. Huang, J. Duarte, M. Atkinson, G. DeZoort, P. Elmer, S. Hauck, J.X. Hu, S.C. Hsu et al., Frontiers in Big Data 5 (2022) [CrossRef] [Google Scholar]
  17. H. Qu, C. Li, S. Qian, Particle transformer for jet tagging (2022), 2202.03772 [Google Scholar]
  18. V. Mikuni, F. Canelli, Machine Learning: Science and Technology 2, 035027 (2021) [CrossRef] [Google Scholar]
  19. K. Yagoh, K. Ogawara, S.i. Iida, The particle tracking method using the kalman filter, in Flow Visualization VI: Proceedings of the Sixth International Symposium on Flow Visualization, October 5–9, 1992, Yokohama, Japan (Springer, 1992), pp. 838–842 [Google Scholar]
  20. B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman filter: Particle filters for tracking applications (Artech house, 2003) [Google Scholar]
  21. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition (2015), 1512.03385 [Google Scholar]
  22. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, A.C. Berg, in Computer Vision – ECCV 2016 (Springer International Publishing, 2016), pp. 21–37, https://doi.org/10.1007%2F978-3-319-46448-0_2 [CrossRef] [Google Scholar]
  23. J. Redmon, A. Farhadi, Yolo9000: Better, faster, stronger (2016), 1612.08242 [Google Scholar]
  24. A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications (2017), 1704.04861 [Google Scholar]
  25. J. Redmon, A. Farhadi, Yolov3: An incremental improvement (2018), 1804.02767 [Google Scholar]
  26. K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn (2018), 1703.06870 [Google Scholar]
  27. T.Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection (2018), 1708.02002 [Google Scholar]
  28. C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: Deep learning on point sets for 3d classification and segmentation (2017), 1612.00593 [Google Scholar]
  29. H. Zhao, L. Jiang, J. Jia, P. Torr, V. Koltun, Point transformer (2021), 2012.09164 [Google Scholar]
  30. J. Kieseler, The European Physical Journal C 80 (2020) [CrossRef] [Google Scholar]
  31. I. Kim, T.W. Valente, Connections 40, 129 (2021) [Google Scholar]
  32. R. Recuero, G. Zago, F. Soares, Social media+ society 5, 2056305119848745 (2019) [Google Scholar]
  33. S. Amrouche, L. Basara, P. Calafiura, V. Estrade, S. Farrell, D.R. Ferreira, L. Finnie, N. Finnie, C. Germain, V.V. Gligorov et al., in The NeurIPS '18 Competition (Springer International Publishing, 2019), pp. 231–264, https://doi.org/10.1007% 2F978-3-030-29135-8_9 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.