Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 02032 | |
Number of page(s) | 8 | |
Section | Online Computing | |
DOI | https://doi.org/10.1051/epjconf/202429502032 | |
Published online | 06 May 2024 |
https://doi.org/10.1051/epjconf/202429502032
Track reconstruction for the ATLAS Phase-II Event Filter using GNNs on FPGAs
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg
* e-mail: sebastian.dittmeier@cern.ch
Published online: 6 May 2024
The High-Luminosity LHC (HL-LHC) will provide an order of magnitude increase in integrated luminosity and enhance the discovery reach for new phenomena. The increased pile-up necessitates major upgrades to the ATLAS detector and trigger. The Phase-II trigger will consist of two levels, a hardware-based Level-0 trigger and an Event Filter (EF) with tracking capabilities. Within the Trigger and Data Acquisition group, a heterogeneous computing farm consisting of CPUs and potentially GPUs and/or FPGAs is under study, together with the use of modern machine learning algorithms such as Graph Neural Networks (GNNs).
GNNs are a powerful class of geometric deep learning methods for modelling spatial dependencies via message passing over graphs. They are well-suited for track reconstruction tasks by learning on an expressive structured graph representation of hit data and considerable speedup over CPU-based execution is possible on FPGAs.
The focus of this publication is a study of track reconstruction for the Phase-II EF system using GNNs on FPGAs. We explore each of the steps in a GNN-based EF tracking pipeline: graph construction, edge classification using an interaction network, and track reconstruction. Several methods and hardware platforms are under evaluation, studying resource utilisation and minimization of model size using quantization aware training, while simultaneously retaining high track reconstruction efficiency and low fake rates required for the EF tracking system.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.