Open Access
Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 02032 | |
Number of page(s) | 8 | |
Section | Online Computing | |
DOI | https://doi.org/10.1051/epjconf/202429502032 | |
Published online | 06 May 2024 |
- ATLAS TDAQ Collaboration, The ATLAS Trigger/DAQ Authorlist, version 14, ATL-COM-DAQ-2022-127, CERN, Geneva, 2022, https://cds.cern.ch/record/ 2842310 [Google Scholar]
- ATLAS Collaboration, Journal of Instrumentation 3, S08003 (2008) [Google Scholar]
- I. Zurbano Fernandez et al., CERN-2020-010 (2020) [Google Scholar]
- ATLAS Collaboration, CERN-LHCC-2015-020 (2015) [Google Scholar]
- ATLAS Collaboration, CERN-LHCC-2017-021 (2017) [Google Scholar]
- ATLAS Collaboration, CERN-LHCC-2017-005 (2017) [Google Scholar]
- ATLAS Collaboration, CERN-LHCC-2020-007 (2020) [Google Scholar]
- ATLAS Collaboration, CERN-LHCC-2017-020 (2017) [Google Scholar]
- ATLAS Collaboration, CERN-LHCC-2022-004 (2022) [Google Scholar]
- E.A. Moreno et al., Eur. Phys. J. C 80, 58 (2020) [CrossRef] [Google Scholar]
- S.R. Qasim et al., Eur. Phys. J. C 79, 608 (2019), 1902.07987 [CrossRef] [Google Scholar]
- S. Farrell et al., Novel deep learning methods for track reconstruction, in 4th International Workshop Connecting The Dots 2018 (2018), 1810.06111 [Google Scholar]
- X. Ju et al., Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors, in 33rd Annual Conference on Neural Information Processing Systems (2020), 2003.11603 [Google Scholar]
- G. DeZoort et al., Comput. Softw. Big Sci. 5, 26 (2021), 2103.16701 [CrossRef] [Google Scholar]
- X. Ju et al., Eur. Phys. J. C 81, 876 (2021), 2103.06995 [CrossRef] [Google Scholar]
- C. Biscarat et al., EPJ Web Conf. 251, 03047 (2021), 2103.00916 [Google Scholar]
- S. Thais et al., Graph neural networks in particle physics: Implementations, innovations, and challenges (2022), 2203.12852 [Google Scholar]
- R. Liu et al., Hierarchical Graph Neural Networks for Particle Track Reconstruction, in 21th International Workshop on Advanced Computing and Analysis Techniques in Physics Research: AI meets Reality (2023), 2303.01640 [Google Scholar]
- S. Caillou et al. (ATLAS), ATLAS ITk Track Reconstruction with a GNN-based pipeline (2022), https://cds.cern.ch/record/2815578 [Google Scholar]
- ATLAS Collaboration, Track finding performance plots for a Graph Neural Network pipeline on ATLAS ITk Simulated Data (2022), https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/ [Google Scholar]
- P.W. Battaglia et al. (2016), 1612.00222 [Google Scholar]
- A. Elabd et al., Front. Big Data 5, 828666 (2022), 2112.02048 [CrossRef] [Google Scholar]
- Z. Que et al. (2022), 2209.14065 [Google Scholar]
- S.Y. Huang et al. (2023), 2306.11330 [Google Scholar]
- AMD, Vitis unified software platform documentation: Embedded soft ware development (ug1400) (2023), https://docs.xilinx.com/r/en-US/ ug1400-vitis-embedded [Google Scholar]
- Intel, Intel® one API Toolkits (2023), https://www.intel.com/content/www/us/ en/developer/tools/oneapi/toolkits.html [Google Scholar]
- D. Murnane et al., Tracking-ml-exa.trkx, https://github.com/ HSF-reco-and-software-triggers/Tracking-ML-Exa.TrkX [Google Scholar]
- B. Hawks et al., Frontiers in Artificial Intelligence 4 (2021) [CrossRef] [Google Scholar]
- A. Pappalardo, Xilinx/brevitas (2023), https://doi.org/10.5281/zenodo. 3333552 [Google Scholar]
- C. Baskin et al., ACM Trans. Comput. Syst. 37 (2021) [Google Scholar]
- A. Pappalardo et al., QONNX: Representing Arbitrary-Precision Quantized Neural Networks, in 4th Workshop on Accelerated Machine Learning (AccML) at HiPEAC 2022 Conference (2022), 2206.07527 [Google Scholar]
- Y. Umuroglu et al., fastmachinelearning/qonnx (2022), https://github.com/ fastmachinelearning/qonnx [Google Scholar]
- M. Kiehn et al., EPJ Web Conf. 214, 06037 (2019) [Google Scholar]
- P.J. Fox et al., JINST 16, P05001 (2021), 2012.04533 [CrossRef] [Google Scholar]
- J. Duarte et al., JINST 13, P07027 (2018), 1804.06913 [CrossRef] [Google Scholar]
- FastML Team, fastmachinelearning/hls4ml (2023), https://github.com/ fastmachinelearning/hls4ml [Google Scholar]
- M. Blott et al., ACM Transactions on Reconfigurable Technology and Systems (TRETS) 11, 1 (2018) [CrossRef] [Google Scholar]
- Y. Umuroglu et al., FINN: A Framework for Fast, Scalable Binarized Neural Network Inference, in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (ACM, 2017), FPGA ’17, pp. 65–74 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.