Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 09033
Number of page(s) 8
Section Artificial Intelligence and Machine Learning
DOI https://doi.org/10.1051/epjconf/202429509033
Published online 06 May 2024
  1. J.P. Edelen, N.M. Cook, arXiv preprint arXiv:2112.07793 (2021) [Google Scholar]
  2. M. Radaideh, C. Pappas, P. Ramuhalli, S. Cousineau, Annual Conference of the PHM Society 14 (2022) [CrossRef] [Google Scholar]
  3. E. Fol, R. Tomás, J.C. de Portugal, G. Franchetti, Physical Review Accelerators and Beams 23 (2020) [Google Scholar]
  4. G. Valentino, R. Bruce, S. Redaelli, R. Rossi, P. Theodoropoulos, S. Jaster-Merz, Anomaly detection for beam loss maps in the Large Hadron Collider, in Journal of Physics: Conference Series (IOP Publishing, 2017), Vol. 874, p. 012002 [CrossRef] [Google Scholar]
  5. D.A. Reynolds et al., Encyclopedia of biometrics 741 (2009) [Google Scholar]
  6. E. Parzen, The Annals of Mathematical Statistics 33, 1065 (1962) [CrossRef] [Google Scholar]
  7. B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, R.C. Williamson, Neural Computation 13, 1443 (2001) [CrossRef] [PubMed] [Google Scholar]
  8. F.T. Liu, K.M. Ting, Z.H. Zhou, Isolation Forest, in 2008 Eighth IEEE International Conference on Data Mining (IEEE, 2008) [Google Scholar]
  9. J. Chen, S. Sathe, C. Aggarwal, D. Turaga, Outlier detection with autoencoder ensembles, in Proceedings of the 2017 SIAM international conference on data mining (SIAM, 2017) [Google Scholar]
  10. W. Lu, Y. Cheng, C. Xiao, S. Chang, S. Huang, B. Liang, T.S. Huang, IEEE Trans. Image Process. 26, 4321 (2017) [CrossRef] [PubMed] [Google Scholar]
  11. Y. Wang, B. Dai, G. Hua, J.A.D. Aston, D.P. Wipf, Green Generative Modeling: Recycling Dirty Data using Recurrent Variational Autoencoders, in Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017, edited by G. Elidan, K. Kersting, A. Ihler (AUAI Press, 2017) [Google Scholar]
  12. Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, D. Pei, Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (2019) [Google Scholar]
  13. Y. Liu, Z. Li, C. Zhou, Y. Jiang, J. Sun, M. Wang, X. He, IEEE Transactions on Knowledge and Data Engineering 32, 1517 (2019) [Google Scholar]
  14. B. Zong, Q. Song, M.R. Min, W. Cheng, C. Lumezanu, D. Cho, H. Chen, Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection, in 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings (OpenReview.net, 2018) [Google Scholar]
  15. L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S.A. Siddiqui, A. Binder, E. Müller, M. Kloft, Deep One-Class Classification, in Proceedings of the 35th International Conference on Machine Learning, edited by J. Dy, A. Krause (PMLR, 2018), Vol. 80 of Proceedings of Machine Learning Research, pp. 4393–4402 [Google Scholar]
  16. D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, in 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, edited by Y. Bengio, Y. LeCun (2014) [Google Scholar]
  17. J. An, S. Cho, Special lecture on IE 2, 1 (2015) [Google Scholar]
  18. R. Humble, W. Colocho, F. O’Shea, D. Ratner, E. Darve, Resilient vae: Unsupervised anomaly detection at the slac linac coherent light source (2023), 2309.02333 [Google Scholar]
  19. I. Higgins, L. Matthey, A. Pal, C.P. Burgess, X. Glorot, M.M. Botvinick, S. Mohamed, A. Lerchner, beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings (OpenReview.net, 2017) [Google Scholar]
  20. M.I. Jordan, Z. Ghahramani, T.S. Jaakkola, L.K. Saul, Machine learning 37, 183 (1999) [CrossRef] [Google Scholar]
  21. S. Eduardo, A. Nazabal, C.K.I. Williams, C. Sutton, Robust Variational Autoencoders for Outlier Detection and Repair of Mixed-Type Data, in Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, edited by S. Chiappa, R. Calandra (PMLR, 2020), Vol. 108 of Proceedings of Machine Learning Research [Google Scholar]
  22. H.L. Van Trees, Detection, estimation, and modulation theory, part I: detection, estimation, and linear modulation theory (John Wiley & Sons, 2004) [Google Scholar]
  23. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.C. Courville, Y. Bengio, Generative Adversarial Nets, in Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, edited by Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger (2014), pp. 2672–2680 [Google Scholar]
  24. T. Straumann, R. Akre, R.G. Johnson, D. Kotturi, P. Krejcik, E. Medvedko, J. Olsen, S. Smith, LCLS Beam-Position Monitor Data Acquisition System, in 2007 International Conference on Accelerator and Large Experimental Physics Control Systems (JACoW, Knoxville, Tennessee, 2007) [Google Scholar]
  25. K. Kim, S. Allison, T. Straumann, E. Williams, Real-Time Performance Improvements and Consideration of Parallel Processing for Beam Synchronous Acquisition (BSA), in Proc. of International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS’15) Melbourne Australia 17-23 October 2015 (JACoW, Geneva, Switzerland, 2015), Number 15 in International Conference on Accelerator and Large Experimental Physics Control Systems, pp. 992–994, ISBN 978-3-95450-148-9, doi:10.18429/JACoW-ICALEPCS2015-WEPGF122 [Google Scholar]
  26. R. Humble, F.H. O’Shea, W. Colocho, M. Gibbs, H. Chaffee, E. Darve, D. Ratner, Phys. Rev. Accel. Beams 25, 122804 (2022) [CrossRef] [Google Scholar]
  27. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library, in Advances in Neural Information Processing Systems, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Curran Associates, Inc., 2019), Vol. 32 [Google Scholar]
  28. D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, edited by Y. Bengio, Y. LeCun (2015) [Google Scholar]
  29. L. McInnes, J. Healy, N. Saul, L. Großberger, Journal of Open Source Software 3, 861 (2018) [CrossRef] [Google Scholar]
  30. E.J. Candès, X. Li, Y. Ma, J. Wright, J. ACM 58, 11:1 (2011) [Google Scholar]
  31. C. Zhou, R.C. Paffenroth, Anomaly Detection with Robust Deep Autoencoders, in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017 (ACM, 2017), pp. 665–674 [Google Scholar]
  32. H. Akrami, A.A. Joshi, J. Li, S. Aydöre, R.M. Leahy, Knowl. Based Syst. 238, 107886 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.