Open Access
Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 09034 | |
Number of page(s) | 7 | |
Section | Artificial Intelligence and Machine Learning | |
DOI | https://doi.org/10.1051/epjconf/202429509034 | |
Published online | 06 May 2024 |
- S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A 506, 250 (2003) [CrossRef] [Google Scholar]
- M.P. L. de Olivera, B. Nachman, Computing and Software for Big Science (2017) 1, 4 (2017), 1701.05927 [CrossRef] [Google Scholar]
- L.d.O. M. Paganini, B. Nachman, Phys. Rev. Lett. 120, 042003 (2018), 1705.02355 [CrossRef] [PubMed] [Google Scholar]
- L.d.O. M. Paganini, B. Nachman, Phys. Rev. D 97, 014021 (2018), 1712.10321 [CrossRef] [Google Scholar]
- G. Aad et al. (ATLAS) (2021), 2109.02551 [Google Scholar]
- ATLAS Collaboration, Fast simulation of the ATLAS calorimeter system with Generative Adversarial Networks (Geneva, 2020), all figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2020-006, http://cds.cern.ch/record/2746032 [Google Scholar]
- Deep generative models for fast shower simulation in ATLAS (Geneva, 2018), http://cds.cern.ch/record/2630433 [Google Scholar]
- V. Chekalina, E. Orlova, F. Ratnikov, D. Ulyanov, A. Ustyuzhanin, E. Zakharov, CHEP 2018 (2018), 1812.01319 [Google Scholar]
- K. Deja, T. Trzcinski, L. Graczykowski, EPJ Web Conf. 214, 06003 (2019) [Google Scholar]
- V. Barin Pacela, HGCAL Fast Simulation with Deep Learning (2018), https://doi.org/10.5281/zenodo.1470512 [Google Scholar]
- A. Dotti, J. Apostolakis, G. Folger, V. Grichine, V. Ivanchenko, M. Kosov, A. Ribon, V. Uzhinsky, D.H. Wright, J. Phys. Conf. Ser. 293, 012022 (2011) [CrossRef] [Google Scholar]
- D. Rezende, S. Mohamed, Variational Inference with Normalizing Flows, in Proceedings of the 32nd International Conference on Machine Learning, edited by F. Bach, D. Blei (PMLR, Lille, France, 2015), Vol. 37 of Proceedings of Machine Learning Research, pp. 1530–1538, https://proceedings.mlr.press/ v37/rezende15.html [Google Scholar]
- C. Krause, D. Shih (2021), 2110.11377 [Google Scholar]
- C. Krause, D. Shih (2021), 2106.05285 [Google Scholar]
- T. Abbott et al. (E-802), Phys. Rev. D 45, 3906 (1992) [CrossRef] [PubMed] [Google Scholar]
- T.S. Nigmanov et al. (MIPP), Phys. Rev. D 83, 012002 (2011), 1010.6291 [CrossRef] [Google Scholar]
- P.D. Group, Progress of Theoretical and Experimental Physics 2022, 083C01 (2022), https://academic.oup.com/ptep/article-pdf/2022/8/083C01/49175539/ptac09 [Google Scholar]
- G. Papamakarios, T. Pavlakou, I. Murray (2017), 1705.07057 [Google Scholar]
- M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org, http://tensorflow.org/ [Google Scholar]
- P.T. Komiske, E.M. Metodiev, J. Thaler, Phys. Rev. Lett. 123, 041801 (2019), 1902.02346 [CrossRef] [PubMed] [Google Scholar]
- T. Cai, J. Cheng, K. Craig, N. Craig, Phys. Rev. D 105, 076003 (2022) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.