Open Access
Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 11012 | |
Number of page(s) | 8 | |
Section | Heterogeneous Computing and Accelerators | |
DOI | https://doi.org/10.1051/epjconf/202429511012 | |
Published online | 06 May 2024 |
- W.F. Samayoa, M.L. Crespo, A. Cicuttin, S. Carrato, IEEE Access (2023) [Google Scholar]
- J. Romoth, M. Porrmann, U. Rückert (2017) [Google Scholar]
- R. Wu, X. Guo, J. Du, J. Li, Electronics 10, 1025 (2021) [CrossRef] [Google Scholar]
- P. Coussy, A. Morawiec, High-Level Synthesis: From Algorithm to Digital Circuits (2008) [Google Scholar]
- R.S. Molina, V. Gil-Costa, M.L. Crespo, G. Ramponi, IEEE Access 10, 90429 (2022) [CrossRef] [Google Scholar]
- Vivado Design Suite User Guide - High-Level Synthesis, Xilinx Inc. (2020) [Google Scholar]
- M. Mariotti, D. Magalotti, D. Spiga, L. Storchi, Parallel Computing 109, 102873 (2022) [CrossRef] [Google Scholar]
- M. Mariotti, L. Storchi, D. Spiga, D. Salomonie, T. Boccalif, D. Bonacorsid, The Bond-Machine toolkit: Enabling Machine Learning on FPGA, in International Symposium on Grids & Clouds 2019 (2019), p. 20 [Google Scholar]
- J. Duarte et al., JINST 13, P07027 (2018), 1804.06913 [CrossRef] [Google Scholar]
- FastML Team, fastmachinelearning/hls4ml (2023), https://github.com/ fastmachinelearning/hls4ml [Google Scholar]
- G. Van Rossum, F.L. Drake, Python 3 Reference Manual (CreateSpace, Scotts Valley, CA, 2009), ISBN 1441412697 [Google Scholar]
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org, https://www. tensorflow.org/ [Google Scholar]
- IEEE Std 754-2019 (Revision of IEEE 754-2008) pp. 1–84 (2019) [Google Scholar]
- F. de Dinechin, B. Pasca, IEEE Design & Test of Computers 28, 18 (2011) [CrossRef] [Google Scholar]
- A. Kumar, J. Kolhe, S. Ghemawat, L. Ryan, Internet-Draft draft-kumar-rtgwg-grpc-protocol-00, Internet Engineering Task Force (2016), work in Progress, https://datatracker.ietf.org/doc/draft-kumar-rtgwg-grpc-protocol/00/ [Google Scholar]
- T. Feist, White Paper 5, 30 (2012) [Google Scholar]
- Highly scalable and standards based model inference platform on kubernetes for trusted ai, https://kserve.github.io/website [Google Scholar]
- The machine learning toolkit for kubernetes, https://www.kubeflow.org/ [Google Scholar]
- An open-source system for automating deployment, scaling, and management of containerized applications, https://kubernetes.io/ [Google Scholar]
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., in Advances in Neural Information Processing Systems 32 (Curran Associates, Inc., 2019), pp. 8024–8035, http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf [Google Scholar]
- J. Bai, F. Lu, K. Zhang et al., Onnx: Open neural network exchange, https://github. com/onnx/onnx (2019) [Google Scholar]
- D. Ciangottini, L. Storchi, M. Mariotti, G. Bianchini, G. Surace, D. Spiga, KServe inference extension for a FPGA vendor-free ecosystem (2023), https://github.com/BondMachineHQ/kserve-bond-extension, https://doi.org/10.5281/zenodo.8365556 [Google Scholar]
- M. Feurer, J.N. van Rijn, A. Kadra, P. Gijsbers, N. Mallik, S. Ravi, A. Mueller, J. Vanschoren, F. Hutter, arXiv 1911.02490 (2019) [Google Scholar]
- Free software, open standards, and web services for interactive computing across all programming languages, https://jupyter.org/ [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.