Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 11023
Number of page(s) 7
Section Heterogeneous Computing and Accelerators
DOI https://doi.org/10.1051/epjconf/202429511023
Published online 06 May 2024
  1. T. Britton, D. Lawrence, K. Rajput, AI enabled data quality monitoring with Hydra, in EPJ Web of Conferences (EDP Sciences, 2021), Vol. 251 [Google Scholar]
  2. S. Williams, A. Waterman, D. Patterson, Roofline: an insightful visual performance model for multicore architectures, in Communications of the ACM (ACM New York, NY, USA, 2009), Vol. 52, pp. 65–76 [Google Scholar]
  3. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in Advances in neural information processing systems (2017), Vol. 30 [Google Scholar]
  4. D.E. Rumelhart, G.E. Hinton, R.J. Williams et al., Learning internal representations by error propagation (Institute for Cognitive Science, University of California, San Diego, 1985) [CrossRef] [Google Scholar]
  5. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks, in Communications of the ACM (ACM New York, NY, USA, 2020), Vol. 63, pp. 139–144 [CrossRef] [Google Scholar]
  6. Y. Wang, G.Y. Wei, D. Brooks, A Systematic Methodology for Analysis of Deep Learning Hardware and Software Platforms, in The 3rd Conference on Machine Learning and Systems (MLSys) (2020) [Google Scholar]
  7. M. Hobbhahn, How to Measure FLOP/s for Neural Networks Empirically? (2021), https://epochai.org/blog/measure-FLOPs-empirically [Google Scholar]
  8. H. Marius, S. Jaime, What’s the Backward-Forward FLOP Ratio for Neural Networks? (2021), https://epochai.org/blog/backward-forward-FLOP-ratio [Google Scholar]
  9. A. Paszke, S.e.a. Gross, in Advances in Neural Information Processing Systems 32 (Curran Associates, Inc., 2019), pp. 8024–8035 [Google Scholar]
  10. M. Abadi, A. Agarwal, et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems (2015), https://www.tensorflow.org/ [Google Scholar]
  11. P. Vingelmann, F. Fitzek, et al., CUDA Toolkit (2024), https://developer.nvidia. com/cuda-toolkit [Google Scholar]
  12. S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer, cuDNN: Efficient Primitives for Deep Learning (2014) [Google Scholar]
  13. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (2016), pp. 2818–2826 [Google Scholar]
  14. F. Chollet, et al., Keras, https://github.com/fchollet/keras (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.