Open Access
Issue
EPJ Web Conf.
Volume 298, 2024
10th International Meeting of Union for Compact Accelerator-Driven Neutron Sources (UCANS-10)
Article Number 03001
Number of page(s) 8
Section Technologies
DOI https://doi.org/10.1051/epjconf/202429803001
Published online 27 June 2024
  1. V. Santoro et al., HighNESS conceptual design report, arXiv:2309.17333v1, 2023, https://doi.org/10.48550/arXiv.2309.17333. [Google Scholar]
  2. L. Zanini et al., Design of the cold and thermal neutron moderators for the European Spallation Source, Nuclear Instrum. Methods in Physics Research, A 925 (2019) 33–52, https://doi.org/10.1016/j.nima.2019.01.003. [Google Scholar]
  3. F. Backman et al., The development of the NNBAR experiment, J. of Instrumentation, Volume 17, 2022, https://doi.org/10.1088/1748-0221/17/10/P10046. [CrossRef] [Google Scholar]
  4. M. Baldo-Ceolin et al., A New experimental limit on neutron — anti-neutron oscillations, Z. Phys. C 63, 409 (1994), https://doi.org/10.1007/BF01580321. [CrossRef] [Google Scholar]
  5. J. M. Carpenter, B. J. Micklich, Proceedings of the workshop on applications of a very cold neutron source, Tech. Rep., Argonne National Lab. (ANL), Argonne, IL (United States) (2005). [Google Scholar]
  6. N. Rizzi et al., An intense source of very cold neutrons using solid deuterium and nanodiamonds for the European Spallation Source, Nuclear Instrum. Methods in Physics Research, A 1062 (2024) 169215, https://doi.org/10.1016/j.nima.2024.169215. [Google Scholar]
  7. F. Mezei, Very Cold Neutrons in condensed matter research, J. Neutron Research 24, 205–210 (2022), https://doi.org/10.3233/JNR-220012. [Google Scholar]
  8. O. Zimmer, Neutron conversion and cascaded cooling in paramagnetic systems for a high-flux source of very cold neutrons, Phys. Rev. C 93, 035503 (2016), https://doi.org/10.1103/PhysRevC.93.035503. [CrossRef] [Google Scholar]
  9. V. Santoro, M. Strobl, L. Zanini, O. Zimmer, Workshop on very cold and ultra cold neutron sources for ESS, J. Neutron Research 24, 73–75 (2022), https://doi.org/10.3233/JNR-220047. [Google Scholar]
  10. L. Zanini et al., Very cold and ultra cold neutron sources for ESS, J. Neutron Research 24, 77–93 (2022), https://doi.org/10.3233/JNR-220040. [Google Scholar]
  11. O. Zimmer et al., In-beam superfluid-helium ultracold neutron source for the ESS, Journal Neutron Research 24, 95–110 (2022), https://doi.org/10.3233/JNR-220045. [Google Scholar]
  12. A. Serebrov and V. Lyamkin, Development of UCN sources at PNPI, J. Neutron Research 24, 145–166 (2022), https://doi.org/10.3233/JNR-220007. [Google Scholar]
  13. L. Zanini et al., General use of low-dimensional moderators in neutron sources, J. Phys.: Conf. Series 1021, 012009 (2018), https://doi.org/10.1088/17426596/1021/1/012009. [CrossRef] [Google Scholar]
  14. L. Zanini, E. Klinkby, F. Mezei and A. Takibayev, Low-dimensional moderators at ESS and compact neutron Sources, EPJ Web of Conferences 231, 04006 (2020), https://doi.org/10.1051/epjconf/202023104006. [CrossRef] [EDP Sciences] [Google Scholar]
  15. Y.J. Shin et al. Compact ultracold neutron source concept for low-energy accelerator-driven neutron sources, Eur.Phys.J.Plus 136 (2021) 8, 882, https://doi.org/10.1140/epjp/s13360-021-01740-1. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.