Open Access
Issue
EPJ Web Conf.
Volume 300, 2024
9th Complexity-Disorder Days 2023
Article Number 01005
Number of page(s) 9
DOI https://doi.org/10.1051/epjconf/202430001005
Published online 08 August 2024
  1. Baldassarri, D.; Gelman, A. Partisans without constraint: Political polarization and trends in American public opin-ion. American Journal of Sociology 2008 114(2), 408–446. [CrossRef] [PubMed] [Google Scholar]
  2. DellaPosta, D. Pluralistic collapse: The “oil spill” model of mass opinion polarization. American Sociological Review 2020 85(3), 507–536. [CrossRef] [Google Scholar]
  3. Zhu, Q. Investing in Polarized America: Real Economic Effects of Political Polarization. 2021 Available at SSRN 3820979. [Google Scholar]
  4. Druckman, J.N.; Levendusky, M.S. What do we measure when we measure affective polarization? Public Opinion Quarterly 2019 83(1), 114–122. [CrossRef] [Google Scholar]
  5. Dandekar, P.; Goel, A.; Lee, D.T. Biased assimilation, homophily, and the dynamics of polarization. Proceedings of the National Academy of Science 2013 110(15), 5791–5796. [CrossRef] [PubMed] [Google Scholar]
  6. Doherty, C.; Kiley, J.; Johnson, B. The partisan divide on political values grows even wider. Pew Research Center. Pew Research 2017. [Google Scholar]
  7. Horobin, W. in Bloomberg: French Government Bypasses Vote Again to Advance Budget Bill (18 October 2023), https://www.bloomberg.com/news/articles/2023-10-18/french-government-bypasses-vote-again-toadvance-budget-bill#xj4y7vzkg [Google Scholar]
  8. Goar, M. in Le Monde (12 January 2023): Pension reform: French government hopes to avoid bypassing lawmakers, https://www.lemonde.fr/en/france/article/2023/01/12/pension-reform-frenchgovernment-hopes-to-avoid-bypassing-lawmakers6011380-7.html [Google Scholar]
  9. Layman, G.C.; Carsey, T.M.; Horowitz, J. Party polarization in American politics. Annual Review of Political Science 2006 9, 83–110. [CrossRef] [Google Scholar]
  10. Bottcher, L.; Gersbach, H. The great divide: drivers of polarization in the US public. EPJ data science 2020 9(1), 1–13. [CrossRef] [Google Scholar]
  11. Dimock, M.; Wike, R. America is exceptional in the nature of its political divide. Pew Research Center 2020. [Google Scholar]
  12. Schaeffer, K. Far more Americans see ‘very strong’ partisan conflicts now than in the last two presidential election years. Pew Research Center 2020. [Google Scholar]
  13. Ginsburgh, V.; Perelman, S.; Pestieau, P. Populism and Social Polarization in European Democracies. CESifo Economic Studies. 2021. [PubMed] [Google Scholar]
  14. Abramowitz, A.I.; Saunders, K.L. Is polarization a myth?. The Journal of Politics 2008 70(2), 542–555. [CrossRef] [Google Scholar]
  15. Jurkowitz, M.; Mitchell, A.; Shearer, E.; Walker, M. US media polarization and the 2020 election: A nation divided. Pew Research Center 2020. [Google Scholar]
  16. McCoy, J.; Somer, M. Toward a theory of pernicious polarization and how it harms democracies: Comparative evidence and possible remedies. The ANNALS of the American Academy of Political and Social Science 2019 681(1), 234–271. [CrossRef] [Google Scholar]
  17. Burgess, G.; Burgess, H.; Kaufman, S. Applying conflict resolution insights to the hyperpolarized, society-wide conflicts threatening liberal democracies. Conflict Resolution Quarterly 2022 (CRQ), 39(4), 355–369. [CrossRef] [Google Scholar]
  18. Axelrod, R.; Daymude, J.J.; Forrest, S. Preventing extreme polarization of political attitudes. Proc. Natl. Acad. Sci. USA 2021, 118, e2102139118. [CrossRef] [PubMed] [Google Scholar]
  19. Cárdenas, E. Social polarization and conflict: a network approach. Cuadernos de Economía 2013 32(SPE 61), 787–801. (formerly 22). [Google Scholar]
  20. O’Connor, C.; Weatherall, J.O. Scientific polarization. European Journal for Philosophy of Science 2018 8(3), 855–875. [CrossRef] [Google Scholar]
  21. Rekker, R. The nature and origins of political polarization over science. Public Understanding of Science 2021 30(4), 352–368. [CrossRef] [PubMed] [Google Scholar]
  22. Lempert, R.J. A new decision sciences for complex systems. Proceedings of the National Academy of Sciences 2002 99(suppl. 3) 7309–7313. [CrossRef] [PubMed] [Google Scholar]
  23. de Jouvenel, H. Futuribles: Origins, philosophy, and practices—Anticipation for action. World Futures Review 2019 11(1), 8–18. [CrossRef] [Google Scholar]
  24. Lempert, R.; Popper, S.; Bankes, S. Confronting surprise. Social Science Computer Review 2002 20(4), 420–440. [CrossRef] [Google Scholar]
  25. Batty, M.; Torrens, P. M. Modelling complexity: the limits to prediction. Cybergeo: European Journal of Geography 2001. [Google Scholar]
  26. Flache, A.; Mas, M.; Feliciani, T.; ChattoeBrown, E., Deffuant, G.; Huet, S.; Lorenz, J. Models of social influence: Towards the next frontiers. Journal of Artificial Societies and Social Simulation 2017 20(4). [CrossRef] [Google Scholar]
  27. Lempert, R. Agent-based modeling as organizational and public policy simulators. Proceedings of the National Academy of Sciences 2002 99(suppl. 3), 7195–7196. [CrossRef] [PubMed] [Google Scholar]
  28. Kaufman, S.; Kaufman, M.; Diep, H.T. Sociophysics of Social Conflict. Physics Today 2018, 71(8), 12. [CrossRef] [Google Scholar]
  29. Wang, S.S.; H., Cervas, J.; Grofman, B.; Lipsitz, K. A systems framework for remedying dysfunction in US democra-cy. Proceedings of the National Academy of Sciences 2021 118(50), e2102154118. [CrossRef] [PubMed] [Google Scholar]
  30. Velasquez-Rojas, Fatima; Federico Vazquez. “Opinion dynamics in two dimensions: domain coarsening leads to stable bi-polarization and anomalous scaling exponents.” Journal of Statistical Mechanics: Theory and Experiment 2018.4 (2018): 043403 [CrossRef] [Google Scholar]
  31. Vazquez, F;, Saintier, N.; Pinasco, J. P. Role of voting intention in public opinion polarization. Physical Review E 2020. 101(1), 012101. [CrossRef] [PubMed] [Google Scholar]
  32. Bruine de Bruin, W.; Saw, H.W.; Goldman, D. P. Political polarization in US residents’ COVID-19 risk perceptions, policy preferences, and protective behaviors. Journal of risk and uncertainty 2020 61(2), 177–194. [CrossRef] [PubMed] [Google Scholar]
  33. Epstein, J. M. Agent-based computational models and generative social science. Complexity 1999 4(5), 41–60. [CrossRef] [Google Scholar]
  34. Liu, Q.; Zhao, J.; Wang, X. Multi-agent model of group polarisation with biased assimilation of arguments. IET Control Theory and Applications 2015 9(3), 485–492. [CrossRef] [Google Scholar]
  35. Bramson, A.; Grim, P.; Singer, D.J.; Berger, W.J.; Sack, G.; Fisher, S.; Holman, B. Understanding polarization: Meanings, measures, and model evaluation. Philosophy of science 2017 84(1), 115–159. [CrossRef] [Google Scholar]
  36. Macy, M.W.; Ma, M.; Tabin, D.R.; Gao, J.; Szymanski, B.K. Polarization and tipping points. Proceedings of the National Academy of Sciences 2021 118(50), e2102144118. [CrossRef] [PubMed] [Google Scholar]
  37. Vega-Oliveros, D.A.; Grande, H.L.; Iannelli, F; Vazquez, F. Bi-layer voter model: Modeling intolerant/tolerant positions and bots in opinion dynamics. The European Physical Journal Special Topics 2022 30(14), 2875–2886. [Google Scholar]
  38. Diep, H.T.; Kaufman, M.; Kaufman, S. Dynamics of Two-group Conflicts: A Statistical Physics Model. Physica A 2017, 469, 183–199. [CrossRef] [Google Scholar]
  39. Kaufman, M.; Kaufman, S.; Diep, H.T. Scenarios of Social Conflict Dynamics on Duplex Networks. The Journal on Policy and Complex Systems 2017, 3(2), 3–13. [CrossRef] [Google Scholar]
  40. Kaufman, M.; Diep, H.T.; Kaufman, S. Sociophysics of intractable conflicts: three-group dynamics. Physica A 2019, 517, 175–187. [CrossRef] [Google Scholar]
  41. Kaufman, M.; Diep, H.T.; Kaufman, S. So-ciophysics Analysis of Multi-Group Conflicts. Entropy (MDPI) 2020, 22 214. [CrossRef] [Google Scholar]
  42. Kaufman, M.; Kaufman, S.; Diep, H.T. MultiGroup Conflict Paths: Anticipatory Scenarios of Attitudes and Outcomes. Journal of Policy and Complex Systems 2019 5:2, Fall 115–136. doi: 10.18278/jpcs.5.2.2 [CrossRef] [Google Scholar]
  43. Kaufman S.; Koutsovoulou M.; Kaufman M. Multi-Group Labor-Management Negotiations: Model and Case Study. Journal on Policy and Complex Systems 2020 6(1): 51–72. [Google Scholar]
  44. Lempert, R.J.; Groves, D.G., Popper; S.W.; Bankes, S.C. A general, analytic method for generating robust strategies and narrative scenarios. Management science 2006 52(4), 514–528. [CrossRef] [Google Scholar]
  45. Gallup party affiliation trend since 2004. https://news.gallup.com/poll/15370/partyaffiliation.aspx (last visited on July 22, 2022). [Google Scholar]
  46. Political Polarization in the American Public. Pew Research Center. 2014. [Google Scholar]
  47. Kaufman, M.; Kaufman, S.; Diep, H. T. Statistical Mechanics of Political Polarization, Entropy 24, 1262 (2022) [CrossRef] [PubMed] [Google Scholar]
  48. Diep, H. T.; Kaufman, M.; Kaufman, S. An Agent-based Statistical Physics Model for Political Polarization: A Monte Carlo Study, Entropy 25, 981 (2023). https://doi.org/10.3390/e25070981. [CrossRef] [PubMed] [Google Scholar]
  49. Galam, S. Unanimity, Coexistence, and Rigidity: Three Sides of Polarization, Entropy 25, 622 (2023). https://doi.org/10.3390/e25040622. [CrossRef] [PubMed] [Google Scholar]
  50. Koslowski, T.; Beck, U. Charge separation in Coulomb liquids: mean-spherical approximation and Monte Carlo simulation, J. Phys.: Condens. Matter 11, 3019–3028 (1999). [CrossRef] [Google Scholar]
  51. Tsekov, R. Ferroelectric phase transitions near ionic liquid/vacuum interfaces, J. Chem. Phys. 126, 191110 (2007). https://doi.org/10.1063/1.2741507. [CrossRef] [PubMed] [Google Scholar]
  52. Kaufrnan, M; Kanner, M. Random-field Blume-Capel model: Mean-field theory, Phys. Rev. B 42, 2378 (1990). [CrossRef] [PubMed] [Google Scholar]
  53. Puha, I.; Diep, H. T. Random-bond and randomanisotropy-field effects in the phase diagram of the Blume-Capel model, Journal of Magnetism and Magnetic Materials 224, 85–92 (2001). [CrossRef] [Google Scholar]
  54. Kaufman, M.; Kaufman, S.; Diep, H. T. Social Depolarization: Blume-Capel Model, preprint doi: 10.20944/preprints202310.1259.v1, to appear in Physics (2023). [Google Scholar]
  55. Burgess, G.; Burgess, H. Massively Parallel Peacebuilding Beyond Intractability 2020 https://www.beyondintractability.org/frontiers/mpp-pape [Google Scholar]
  56. Chattoe-Brown, E. Using agent-based modelling to integrate data on attitude change. Sociological Research Online 2014 19(1), 159–174. [CrossRef] [Google Scholar]
  57. Bayong, E.; Diep, H. T. Effect of long-range interaction on the critical behavior of the continuous Ising model, Phys. Rev. B 59, 11919 (1999). [CrossRef] [Google Scholar]
  58. Diep, H. T. Statistical Physics Fundamentals and Application to Condensed Matter, World Scientific (2015). [Google Scholar]
  59. Galam, S. Contrarian deterministic effects on opinion dynamics: “The hung elections scenario”. Phys. A Stat. Mech. Appl. 333, 453–460 (2004). [CrossRef] [Google Scholar]
  60. Jedrzejewski, A.; Nowak, B.; Abramiuk, A.; Sznajd-Weron, K. Competing local and global interactions in social dynamics: How important is the friendship network? Chaos Interdiscip. J. Nonlinear Sci. 30, 073105 (2020). [Google Scholar]
  61. Oestereich, A.L.; Pires, M.A.; Crokidakis, N. Three-state opinion dynamics inmodular networks. Phys. Rev. E bf 100, 032312 (2019). [CrossRef] [PubMed] [Google Scholar]
  62. Winfree, A. T. The Prehistory of the Belousov-Zhabotinsky Oscillator, Journal of Chemical Education 61 (8), 661–663 (1984). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.