Open Access
Issue
EPJ Web Conf.
Volume 304, 2024
HINPw7 – 7th International Workshop of the Hellenic Institute of Nuclear Physics on Nuclear Structure, Astrophysics and Reaction Dynamics
Article Number 01004
Number of page(s) 7
Section Reaction Dynamics
DOI https://doi.org/10.1051/epjconf/202430401004
Published online 08 October 2024
  1. F. Cappuzzello, C. Agodi, M. Cavallaro, D. Carbone, S. Tudisco, D. Lo Presti, J. Oliveira, P. Finocchiaro, M. Colonna, D. Rifuggiato et al., The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay, Eur. Phys. Jour. A 54 (2018). 10.1140/epja/i2018-12509-3 [Google Scholar]
  2. F. Cappuzzello, C. Agodi, L. Calabretta, D. Calvo, D. Carbone, M. Cavallaro, M. Colonna, P. Finocchiaro, F. Iazzi, R. Linares et al., The NUMEN technical design report, Int. Jour. of Mod. Phys. A 36, 2130018 (2021), https://doi.org/10.1142/S0217751X21300180. 10.1142/S0217751X21300180 [CrossRef] [Google Scholar]
  3. F. Cappuzzello, H. Lenske, M. Cavallaro, C. Agodi, N. Auerbach, J. Bellone, R. Bijker, S. Burrello, S. Calabrese, D. Carbone et al., Shedding light on nuclear aspects of neutrinoless double beta decay by heavy-ion double charge exchange reactions, Prog. in Part. and Nucl. Phys. 128, 103999 (2023). https://doi.org/10.1016/j.ppnp.2022.103999 [CrossRef] [Google Scholar]
  4. T.N. Taddeucci, C.A. Goulding, T.A. Carey, R.C. Byrd, C.D. Goodman, C. Gaarde, J. Larsen, D. Horen, J. Rapaport, E. Sugarbaker, The (p, n) reaction as a probe of beta decay strength, Nucl. Phys. A469, 125 (1987). 10.1016/0375-9474(87)90089-3 [CrossRef] [Google Scholar]
  5. F. Osterfeld, Nuclear spin and isospin excitations, Rev. Mod. Phys. 64, 491 (1992). 10.1103/RevMod-Phys.64.491 [CrossRef] [Google Scholar]
  6. M. Ichimura, H. Sakai, T. Wakasa, Spinisospin responses via (p,n) and (n,p) reactions, Prog. Part. Nucl. Phys. 56, 446 (2006). 10.1016/j.ppnp.2005.09.001 [CrossRef] [Google Scholar]
  7. Y. Fujita, B. Rubio, W. Gelletly, Spin–isospin excitations probed by strong, weak and electro-magnetic interactions, Prog. in Part. and Nucl. Phys. 66, 549 (2011). https://doi.org/10.1016/j.ppnp.2011.01.056 [CrossRef] [Google Scholar]
  8. H. Lenske, F. Cappuzzello, M. Cavallaro, M. Colonna, Heavy Ion Charge Exchange Reactions and Beta Decay, Prog. Part. Nucl. Phys. 109, 103716 (2019). 10.1016/j.ppnp.2019.103716 [CrossRef] [Google Scholar]
  9. S. Mordechai, C.F. Moore, Double giant resonances in atomic nuclei, Nature 352, 393 (1991). 10.1038/352393a0 [CrossRef] [Google Scholar]
  10. F. Cappuzzello, M. Cavallaro, C. Agodi, M. Bondì, D. Carbone, A. Cunsolo, A. Foti, Heavy-ion double charge exchange reactions: A tool toward 0νββ nuclear matrix elements, Eur. Phys. J. A 51, 145 (2015), 1511.03858. 10.1140/epja/i2015-15145-5 [CrossRef] [Google Scholar]
  11. V. Soukeras, F. Cappuzzello, D. Carbone, M. Cavallaro, C. Agodi, L. Acosta, I. Boztosun, G. Brischetto, S. Calabrese, D. Calvo et al., Measurement of the double charge exchange reaction for the 20Ne + 130Te system at 306 MeV, Results in Physics 28, 104691 (2021). https://doi.org/10.1016/j.rinp.2021.104691 [CrossRef] [Google Scholar]
  12. F. Cappuzzello, C. Agodi, D. Carbone, M. Cavallaro, The MAGNEX spectrometer: results and perspectives, Eur. Phys. J. A52, 167 (2016), 1606.06731. 10.1140/epja/i2016-16167-1 [CrossRef] [Google Scholar]
  13. M. Cavallaro, C. Agodi, G. Brischetto, S. Calabrese, F. Cappuzzello, D. Carbone, I. Ciraldo, A. Pakou, O. Sgouros, V. Soukeras et al., The MAGNEX magnetic spectrometer for double charge exchange reactions, Nucl. Inst. and Meth. in Phys. Res. B: Beam Interactions with Materials and Atoms 463, 334 (2020). https://doi.org/10.1016/j.nimb.2019.04.069 [Google Scholar]
  14. M. Cavallaro et al., Charge-state distributions of 20Ne ions emerging from thin foils, Results in Physics 13, 102191 (2019). https://doi.org/10.1016/j.rinp.2019.102191 [CrossRef] [Google Scholar]
  15. S. Calabrese et al., First Measurement of the 116Cd(20Ne,20O)116Sn Reaction at 15 A MeV, Acta Phys. Polon. B49, 275 (2018). 10.5506/APhysPolB.49.275 [CrossRef] [Google Scholar]
  16. S. Calabrese, F. Cappuzzello, D. Carbone, M. Cavallaro, C. Agodi, D. Torresi, L. Acosta, D. Bonanno, D. Bongiovanni, T. Borello-Lewin et al., Analysis of the background on cross section measurements with the MAGNEX spectrometer: The (20Ne, 20O) double charge exchange case, Nucl. Inst. and Meth. in Phys. Res. A: Accelerators, Spectrometers, Detectors and Associated Equipment 980, 164500 (2020). https://doi.org/10.1016/j.nima.2020.164500 [Google Scholar]
  17. Pakou, A., Sgouros, O., Soukeras, V., Cappuzzello, F., Global descriptions and decay rates for continuum excitation of weakly bound nuclei, Eur. Phys. J. A 57, 25 (2021). 10.1140/epja/s10050-020-00338-y [CrossRef] [Google Scholar]
  18. G.A. Brischetto, O. Sgouros, D. Carbone, F. Cappuzzello, M. Cavallaro, J. Lubian, G. De Gregorio, C. Agodi, D. Calvo, E.R. Chávez Lomelí et al. (NUMEN Collaboration), 18O +48 Ti elastic and inelastic scattering at 275 mev, Phys. Rev. C 109, 014604 (2024). 10.1103/PhysRevC.109.014604 [CrossRef] [Google Scholar]
  19. L. La Fauci, A. Spatafora, F. Cappuzzello, C. Agodi, D. Carbone, M. Cavallaro, J. Lubian, L. Acosta, P. Amador-Valenzuela, T. Borello-Lewin et al. (NUMEN collaboration), 18O +76 Se elastic and inelastic scattering at 275 MeV, Phys. Rev. C 104, 054610 (2021). 10.1103/PhysRevC.104.054610 [CrossRef] [Google Scholar]
  20. D. Carbone, R. Linares, P. Amador-Valenzuela, S. Calabrese, F. Cappuzzello, M. Cavallaro, S. Firat, M. Fisichella, A. Spatafora, L. Acosta et al., Initial state interaction for the 20Ne + 130Te and 18O + 116Sn systems at 15.3 AMeV from elastic and inelastic scattering measurements, Universe 7 (2021). 10.3390/universe7030058 [CrossRef] [Google Scholar]
  21. A. Spatafora, F. Cappuzzello, D. Carbone, M. Cavallaro, J.A. Lay, L. Acosta, C. Agodi, D. Bonanno, D. Bongiovanni, I. Boztosun et al. (for the NUMEN Collaboration), 20Ne+76 Ge elastic and inelastic scattering at 306 mev, Phys. Rev. C 100, 034620 (2019). 10.1103/PhysRevC.100.034620 [CrossRef] [Google Scholar]
  22. I. Ciraldo, F. Cappuzzello, M. Cavallaro, D. Carbone, A. Gargano, G. De Gregorio, H. Garcia-Tecocoatzi, E. Santopinto, R.I. Magaña Vsevolodovna, L. Acosta et al. (NUMEN collaboration), Analysis of oneproton transfer reaction in 18O +76 Se collisions at 275 mev, Phys. Rev. C 109, 024615 (2024). 10.1103/PhysRevC.109.024615 [CrossRef] [Google Scholar]
  23. O. Sgouros, M. Cutuli, F. Cappuzzello, M. Cavallaro, D. Carbone, C. Agodi, G. De Gregorio, A. Gargano, R. Linares, G.A. Brischetto et al. (for the NUMEN Collaboration), One-neutron transfer reaction in the 18O +48 Ti collision at 275 mev, Phys. Rev. C 108, 044611 (2023). 10.1103/PhysRevC.108.044611 [CrossRef] [Google Scholar]
  24. I. Ciraldo, F. Cappuzzello, M. Cavallaro, D. Carbone, S. Burrello, A. Spatafora, A. Gargano, G. De Gregorio, R.I.M.n. Vsevolodovna, L. Acosta et al. (For the NUMEN collaboration), Analysis of the one-neutron transfer reaction in 18O +76 Se collisions at 275 mev, Phys. Rev. C 105, 044607 (2022). 10.1103/Phys-RevC.105.044607 [CrossRef] [Google Scholar]
  25. O. Sgouros, M. Cavallaro, F. Cappuzzello, D. Carbone, C. Agodi, A. Gargano, G. De Gregorio, C. Altana, G.A. Brischetto, S. Burrello et al. (for the NUMEN Collaboration), One-proton transfer reaction for the 18O +48 Ti system at 275 mev, Phys. Rev. C 104, 034617 (2021). 10.1103/PhysRevC.104.034617 [CrossRef] [Google Scholar]
  26. S. Calabrese, M. Cavallaro, D. Carbone, F. Cappuzzello, C. Agodi, S. Burrello, G. De Gregorio, J.L. Ferreira, A. Gargano, O. Sgouros et al. (NUMEN Collaboration), 18O-induced single-nucleon transfer reactions on 40Ca at 15.3 AMeV within a multichannel analysis, Phys. Rev. C 104, 064609 (2021). 10.1103/PhysRevC.104.064609 [CrossRef] [Google Scholar]
  27. J. Ferreira, D. Carbone, M. Cavallaro, N. Deshmukh, C. Agodi, G. Brischetto, S. Calabrese, F. Cappuzzello, E. Cardozo, I. Ciraldo et al., Analysis of two-proton transfer in the 40Ca(18O, 20Ne) 38Ar reaction at 270 MeV incident energy, Phys. Rev. C 103 (2021). 10.1103/PhysRevC.103.054604 [CrossRef] [Google Scholar]
  28. D. Carbone, J. Ferreira, S. Calabrese, F. Cappuzzello, M. Cavallaro, A. Hacisalihoglu, H. Lenske, J. Lubian, R. Magaña Vsevolodovna, E. Santopinto et al., Analysis of two-nucleon transfer reactions in the 20Ne + 116Cd system at 306 MeV, Phys. Rev. C 102 (2020). 10.1103/PhysRevC.102.044606 [CrossRef] [Google Scholar]
  29. B. Urazbekov, N. Burtebayev, F. Cappuzzello, D. Carbone, M. Cavallaro, M. Colonna, A. Gargano, A. Spatafora (NUMEN Collaboration), Two-step transfer mechanisms in the charge-exchange reaction 40Ca(18O,18 F)40K at 275 mev, Phys. Rev. C 108, 064609 (2023). 10.1103/PhysRevC.108.064609 [CrossRef] [Google Scholar]
  30. S. Burrello, S. Calabrese, F. Cappuzzello, D. Carbone, M. Cavallaro, M. Colonna, J.A. Lay, H. Lenske, C. Agodi, J.L. Ferreira et al. (NUMEN Collaboration), Multichannel experimental and theoretical constraints for the 116Cd(20Ne,20 F)116In charge exchange reaction at 306 MeV, Phys. Rev. C 105, 024616 (2022). 10.1103/PhysRevC.105.024616 [CrossRef] [Google Scholar]
  31. M. Cavallaro, J.I. Bellone, S. Calabrese, C. Agodi, S. Burrello, F. Cappuzzello, D. Carbone, M. Colonna, N. Deshmukh, H. Lenske et al., A constrained analysis of the 40Ca(18O,18F)40K direct charge exchange reaction mechanism at 275 MeV, Frontiers in Astronomy and Space Sciences 8, 61 (2021). 10.3389/fspas.2021.659815 [CrossRef] [Google Scholar]
  32. J.L. Ferreira, J. Lubian, F. Cappuzzello, M. Cavallaro, D. Carbone (NUMEN Collaboration), Multinucleon transfer in the 116Cd(20Ne,20 O)116Sn double charge exchange reaction at 306 MeV incident energy, Phys. Rev. C 105, 014630 (2022). 10.1103/PhysRevC.105.014630 [CrossRef] [Google Scholar]
  33. J.I. Bellone, S. Burrello, M. Colonna, J.A. Lay, H. Lenske, Two-step description of heavy ion double charge exchange reactions, Phys. Lett. B 807, 135528 (2020). https://doi.org/10.1016/j.physletb.2020.135528 [CrossRef] [Google Scholar]
  34. H. Lenske, J. Bellone, M. Colonna, D. Gambacurta, Nuclear matrix elements for heavy ion sequential double charge exchange reactions, Universe 7 (2021). 10.3390/universe7040098 [CrossRef] [Google Scholar]
  35. H. Lenske, J. Bellone, M. Colonna, D. Gambacurta, J.A. Lay, Induced isotensor interactions in heavy-ion double-charge-exchange reactions and the role of initial and final state interactions, Universe 10 (2024). 10.3390/universe10020093 [Google Scholar]
  36. H. Lenske, J.I. Bellone, M. Colonna, J.A. Lay, Theory of Single Charge Exchange Heavy Ion Reactions, Phys. Rev. C 98, 044620 (2018), 1803.06290. 10.1103/PhysRevC.98.044620 [CrossRef] [Google Scholar]
  37. H. Lenske, J. Bellone, M. Colonna, D. Gambacurta, Theory of majorana-type heavy ion double charge exchange reactions by pion–nucleon isotensor interactions, Universe 10 (2024). 10.3390/uni-verse10050202 [Google Scholar]
  38. M. Cavallaro et al., NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay, PoS BORMIO2017, 015 (2017). 10.22323/1.302.0015 [Google Scholar]
  39. H. Matsubara et al., Spectroscopic measurement in 9He and 12Be, Few-Body Systems 54, 1433 (2013). 10.1007/s00601-012-0586-9 [CrossRef] [Google Scholar]
  40. S.R. Elliott, A.A. Hahn, M.K. Moe, Direct evidence for two-neutrino double-beta decay in 82Se, Phys. Rev. Lett. 59, 2020 (1987). 10.1103/Phys-RevLett.59.2020 [CrossRef] [PubMed] [Google Scholar]
  41. A. Barabash, Precise half-life values for twoneutrino double-β decay: 2020 review, Universe 6 (2020). 10.3390/universe6100159 [CrossRef] [Google Scholar]
  42. H. Ejiri, J. Suhonen, K. Zuber, Neutrino-nuclear responses for astro-neutrinos, singe beta decays and double beta decays, Phys. Rep. 797, 1 (2019). 10.1016/j.physrep.2018.12.001 [CrossRef] [Google Scholar]
  43. M.J. Dolinski, A.W. Poon, W. Rodejohann, Neutrinoless double-beta decay: Status and prospects, Annual Review of Nuclear and Particle Science 69, 219 (2019). 10.1146/annurev-nucl-101918-023407 [CrossRef] [Google Scholar]
  44. F. Šimkovic, G. Pantis, J.D. Vergados, A. Faessler, Additional nucleon current contributions to neutrinoless double β decay, Phys. Rev. C 60, 055502 (1999). 10.1103/PhysRevC.60.055502 [CrossRef] [Google Scholar]
  45. J. Kotila, F. Iachello, Phase-space factors for double-β decay, Phys. Rev. C 85, 034316 (2012). 10.1103/PhysRevC.85.034316 [CrossRef] [Google Scholar]
  46. T. Tomoda, Double beta-decay, Rep. Prog. Phys. 54, 53 (1991). doi:10.1088/0034-4885/54/1/002 [CrossRef] [Google Scholar]
  47. M. Agostini, G. Benato, J.A. Detwiler, J. Menéndez, F. Vissani, Toward the discovery of matter creation with neutrinoless ββ decay, Rev. Mod. Phys. 95, 025002 (2023). 10.1103/RevModPhys.95.025002 [CrossRef] [Google Scholar]
  48. J. Suhonen, Double beta decays of 124xe investigated in the qrpa framework, Journal of Physics G: Nuclear and Particle Physics 40, 075102 (2013). 10.1088/0954-3899/40/7/075102 [CrossRef] [Google Scholar]
  49. D. Measday, The nuclear physics of muon capture, Phys. Rep. 354, 243 (2001). https://doi.org/10.1016/S0370-1573(01)00012-6 [CrossRef] [Google Scholar]
  50. H. Ejiri, Double beta decays and neutrino masses, Journal of the Physical Society of Japan 74, 2101 (2005), https://doi.org/10.1143/JPSJ.74.2101. 10.1143/JPSJ.74.2101 [CrossRef] [Google Scholar]
  51. L. Jokiniemi, J. Suhonen, H. Ejiri, I. Hashim, Pinning down the strength function for ordinary muon capture on 100Mo, Phys. Lett. B 794, 143 (2019). https://doi.org/10.1016/j.physletb.2019.05.037 [CrossRef] [Google Scholar]
  52. B.A. Brown, M. Horoi, R.A. Sen’kov, Nuclear structure aspects of neutrinoless double-β decay, Phys. Rev. Lett. 113, 262501 (2014). 10.1103/Phys-RevLett.113.262501 [CrossRef] [PubMed] [Google Scholar]
  53. J.P. Schiffer, S.J. Freeman, J.A. Clark, C. Deibel, C.R. Fitzpatrick, S. Gros, A. Heinz, D. Hirata, C.L. Jiang, B.P. Kay et al., Nuclear structure relevant to neutrinoless double β decay: 76Ge and 76Se, Phys. Rev. Lett. 100, 112501 (2008). 10.1103/Phys-RevLett.100.112501 [CrossRef] [PubMed] [Google Scholar]
  54. A. Roberts, A.M. Howard, J.J. Kolata, A.N. Villano, F.D. Becchetti, P.A. DeYoung, M. Febbraro, S.J. Freeman, B.P. Kay, S.A. McAllister et al., Proton pair correlations and the neutrinoless double-β decay of 76Ge, Phys. Rev. C 87, 051305 (2013). 10.1103/PhysRevC.87.051305 [CrossRef] [Google Scholar]
  55. N. Pietralla, H. Scheit, Experiments on the competitive double-gamma decay, Journal of Physics: Conference Series 1056, 012045 (2018). 10.1088/1742-6596/1056/1/012045 [CrossRef] [Google Scholar]
  56. D. Frekers, Nuclear reactions and the double beta decay, Prog. in Part. and Nucl. Phys. 64, 281 (2010), neutrinos in Cosmology, in Astro, Particle and Nuclear Physics. https://doi.org/10.1016/j.ppnp.2009.12.029 [Google Scholar]
  57. C.J. Guess, T. Adachi, H. Akimune, A. Algora, S.M. Austin, D. Bazin, B.A. Brown, C. Caesar, J.M. Deaven, H. Ejiri et al., The 150Nd(3He,t) and 150Sm(t,3He) reactions with applications to ββ decay of 150Nd, Phys. Rev. C 83, 064318 (2011). 10.1103/PhysRevC.83.064318 [CrossRef] [Google Scholar]
  58. H. Ejiri, Neutrino-Mass Sensitivity and Nuclear Matrix Element for Neutrinoless Double Beta Decay, Universe 6, 225 (2020). 10.3390/universe6120225 [CrossRef] [Google Scholar]
  59. J. Engel, J. Menéndez, Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review, Reports on Progress in Physics 80, 046301 (2017). 10.1088/1361-6633/aa5bc5 [CrossRef] [PubMed] [Google Scholar]
  60. X. Wang, A. Hayes, J. Carlson, G. Dong, E. Mereghetti, S. Pastore, R. Wiringa, Comparison between variational monte carlo and shell model calculations of neutrinoless double beta decay matrix elements in light nuclei, Phys. Lett. B 798, 134974 (2019). https://doi.org/10.1016/j.physletb.2019.134974 [CrossRef] [Google Scholar]
  61. J. Suhonen, M. Kortelainen, Nuclear matrix elements for double beta decay, Int. Jour. of Mod. Phys. E 17, 1 (2008), https://doi.org/10.1142/S0218301308009495. 10.1142/S0218301308009495 [CrossRef] [Google Scholar]
  62. F. Šimkovic, V. Rodin, A. Faessler, P. Vogel, 0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration, Phys. Rev. C 87, 045501 (2013), 1302.1509. 10.1103/PhysRevC.87.045501 [CrossRef] [Google Scholar]
  63. N.L. Vaquero, T.R. Rodríguez, J.L. Egido, Shape and pairing fluctuation effects on neutrinoless double beta decay nuclear matrix elements, Phys. Rev. Lett. 111, 142501 (2013). 10.1103/Phys-RevLett.111.142501 [CrossRef] [PubMed] [Google Scholar]
  64. T.R. Rodríguez, G. Martínez-Pinedo, Energy density functional study of nuclear matrix elements for neutrinoless ββ decay, Phys. Rev. Lett. 105, 252503 (2010). 10.1103/PhysRevLett.105.252503 [CrossRef] [PubMed] [Google Scholar]
  65. J.M. Yao, L.S. Song, K. Hagino, P. Ring, J. Meng, Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory, Phys. Rev. C 91, 024316 (2015). 10.1103/PhysRevC.91.024316 [CrossRef] [Google Scholar]
  66. E. Caurier, J. Menéndez, F. Nowacki, A. Poves, Influence of pairing on the nuclear matrix elements of the neutrinoless ββ decays, Phys. Rev. Lett. 100, 052503 (2008). 10.1103/PhysRevLett.100.052503 [CrossRef] [PubMed] [Google Scholar]
  67. Y. Iwata, N. Shimizu, T. Otsuka, Y. Utsuno, J. Menéndez, M. Honma, T. Abe, Large-scale shellmodel analysis of the neutrinoless ββ decay of 48Ca, Phys. Rev. Lett. 116, 112502 (2016). 10.1103/Phys-RevLett.116.112502 [CrossRef] [PubMed] [Google Scholar]
  68. L. Coraggio, A. Gargano, N. Itaco, R. Mancino, F. Nowacki, Calculation of the neutrinoless double-β decay matrix element within the realistic shell model, Phys. Rev. C 101, 044315 (2020). 10.1103/Phys-RevC.101.044315 [CrossRef] [Google Scholar]
  69. J. Barea, J. Kotila, F. Iachello, Nuclear matrix elements for double-β decay, Phys. Rev. C 87, 014315 (2013). 10.1103/PhysRevC.87.014315 [CrossRef] [Google Scholar]
  70. A. Belley, C.G. Payne, S.R. Stroberg, T. Miyagi, J.D. Holt, Ab initio neutrinoless double-beta decay matrix elements for 48Ca, 76Ge, and 82Se, Phys. Rev. Lett. 126, 042502 (2021), 2008.06588. 10.1103/Phys-RevLett.126.042502 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.