Open Access
Issue
EPJ Web Conf.
Volume 304, 2024
HINPw7 – 7th International Workshop of the Hellenic Institute of Nuclear Physics on Nuclear Structure, Astrophysics and Reaction Dynamics
Article Number 01005
Number of page(s) 5
Section Reaction Dynamics
DOI https://doi.org/10.1051/epjconf/202430401005
Published online 08 October 2024
  1. M. J. Dolinski et al., Neutrinoless Double-Beta Decay: Status and Prospects, Annu. Rev. Nucl. Part. Sci. 69, 219 (2019). https://doi.org/10.1146/annurev-nucl-101918-023407 [CrossRef] [Google Scholar]
  2. M. Agostini et al., Toward the discovery of matter creation with neutrinoless ββ decay, Rev. Mod. Phys. 95, 025002 (2023). https://doi.org/10.1103/RevModPhys.95.025002 [CrossRef] [Google Scholar]
  3. F. Cappuzzello et al., The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay, Eur. Phys. J. A 54, 72 (2018). https://doi.org/10.1140/epja/i2018-12509-3 [CrossRef] [Google Scholar]
  4. F. Cappuzzello et al., Shedding light on nuclear aspects of neutrinoless double beta decay by heavy-ion double charge exchange reactions, Prog. Part. Nucl. Phys. 128, 103999 (2023). https://doi.org/10.1016/j.ppnp.2022.103999 [CrossRef] [Google Scholar]
  5. J. B. Albert et al., Search for Majorana neutrinos with the first two years of EXO-200 data, Nature 510, 229 (2014). https://doi.org/10.1038/nature13432 [CrossRef] [PubMed] [Google Scholar]
  6. M. Agostini et al., Final Results of GERDA on the Search for Neutrinoless Double-β Decay, Phys. Rev. Lett. 125, 252502 (2020). https://doi.org/10.1103/PhysRevLett.125.252502 [CrossRef] [PubMed] [Google Scholar]
  7. D. Q. Adams et al., Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE, Nature 604, 53 (2022). https://doi.org/10.1038/s41586-022-04497-4 [CrossRef] [PubMed] [Google Scholar]
  8. S. Abe et al., Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen, Phys. Rev. Lett. 130, 051801 (2023). https://doi.org/10.1103/PhysRevLett.130.051801 [CrossRef] [PubMed] [Google Scholar]
  9. A. Belley et al., Ab Initio Neutrinoless Double-Beta Decay Matrix Elements for 48Ca, 76Ge, and 82Se, Phys. Rev. Lett. 126, 042502 (2021). https://doi.org/10.1103/PhysRevLett.126.042502 [CrossRef] [PubMed] [Google Scholar]
  10. O. Sgouros et al., One-neutron transfer reaction in the 18O+48Ti collision at 275 MeV, Phys. Rev. C 108, 044611 (2023). https://doi.org/10.1103/PhysRevC.108.044611 [CrossRef] [Google Scholar]
  11. H. Lenske et al., Heavy ion charge exchange reactions as probes for nuclear β-decay, Prog. Part. Nucl. Phys. 109, 103716 (2019). https://doi.org/10.1016/j.ppnp.2019.103716 [CrossRef] [Google Scholar]
  12. M. Cavallaro et al., A Constrained Analysis of the 40Ca(18O,18F)40K Direct Charge Exchange Reaction Mechanism at 275 MeV, Front. Astron. Space Sci. 8, 659815 (2021). https://doi.org/10.3389/fspas.2021.659815 [CrossRef] [Google Scholar]
  13. D. Carbone et al., Analysis of two-nucleon transfer reactions in the 20Ne +116 Cd system at 306 MeV, Phys. Rev. C 102, 044606 (2020). https://doi.org/10.1103/PhysRevC.102.044606 [CrossRef] [Google Scholar]
  14. J. L. Ferreira et al., Analysis of two-proton transfer in the 40Ca(18O,20 Ne) 38Ar reaction at 270 MeV incident energy, Phys. Rev. C 103, 054604 (2021). https://doi.org/10.1103/PhysRevC.103.054604 [CrossRef] [Google Scholar]
  15. S. Calabrese et al., 18O-induced single-nucleon transfer reactions on 40Ca at 15.3A MeV within a multichannel analysis, Phys. Rev. C 104, 064609 (2021). https://doi.org/10.1103/PhysRevC.104.064609 [CrossRef] [Google Scholar]
  16. I. Ciraldo et al., Analysis of the one-neutron transfer reaction in 18O +76 Se collisions at 275 MeV, Phys. Rev. C 105, 044607 (2022). https://doi.org/10.1103/PhysRevC.105.044607 [CrossRef] [Google Scholar]
  17. S. Burrello et al., Multichannel experimental and theoretical constraints for the 116Cd(20Ne,20 F)116In charge exchange reaction at 306 MeV, Phys. Rev. C 105, 024616 (2022). https://doi.org/10.1103/PhysRevC.105.024616 [CrossRef] [Google Scholar]
  18. A. Spatafora et al., Multichannel experimental and theoretical approach to the 12C(18O,18 F)12B singlecharge-exchange reaction at 275 MeV: Initial-state interaction and single-particle properties of nuclear wave functions, Phys. Rev. C 107, 024605 (2023). https://doi.org/10.1103/PhysRevC.107.024605 [CrossRef] [Google Scholar]
  19. I. Ciraldo et al., Analysis of one-proton transfer reaction in 18O +76 Se collisions at 275 MeV, Phys. Rev. C 109, 024615 (2024). https://doi.org/10.1103/PhysRevC.109.024615 [CrossRef] [Google Scholar]
  20. J. L. Ferreira et al., Multinucleon transfer in the 116Cd(20Ne,20 O)116Sn double charge exchange reaction at 306 MeV incident energy, Phys. Rev. C 105, 014630 (2022). https://doi.org/10.1103/PhysRevC.105.014630 [CrossRef] [Google Scholar]
  21. M. Cavallaro et al., NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay, PoS BORMIO 2017, 015 (2017). https://doi.org/10.22323/1.302.0015 [Google Scholar]
  22. G. A. Brischetto et al., 18O +48 Ti elastic and inelastic scattering at 275 MeV, Phys. Rev. C 109, 014604 (2024). https://doi.org/10.1103/PhysRevC.109.014604 [CrossRef] [Google Scholar]
  23. O. Sgouros et al., One-proton transfer reaction for the 18O +48 Ti system at 275 MeV, Phys. Rev. C 104, 034617 (2021). https://doi.org/10.1103/PhysRevC.104.034617 [CrossRef] [Google Scholar]
  24. O. Sgouros, A multi-channel approach to the study of the 18O +48 Ti reaction within the NUMEN project, Il Nuovo Cimento 45 C, 70 (2022). http://dx.doi.org/10.1393/ncc/i2022-22070-3 [Google Scholar]
  25. F. Cappuzzello et al., The MAGNEX spectrometer: Results and perspectives, Eur. Phys. J. A 52, 167 (2016). https://doi.org/10.1140/epja/i2016-16167-1 [CrossRef] [Google Scholar]
  26. D. Torresi et al., An upgraded focal plane detector for the MAGNEX spectrometer, Nuclear Instruments and Methods in Physics Research A 989, 164918 (2021). https://doi.org/10.1016/j.nima.2020.164918 [CrossRef] [Google Scholar]
  27. F. Cappuzzello et al., A particle identification technique for large acceptance spectrometers, Nuclear Instruments and Methods in Physics Research A 621, 419 (2010). https://doi.org/10.1016/j.nima.2010.05.027 [CrossRef] [Google Scholar]
  28. F. Cappuzzello et al., Measuring the ions momentum vector with a large acceptance magnetic spectrometer, Nuclear Instruments and Methods in Physics Research A 638, 74 (2011). https://doi.org/10.1016/j.nima.2011.02.045 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.