Open Access
Issue |
EPJ Web Conf.
Volume 305, 2024
6th International Conference on Applications of Optics and Photonics (AOP2024)
|
|
---|---|---|
Article Number | 00027 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/epjconf/202430500027 | |
Published online | 15 October 2024 |
- L. T. A. A. I. P. G. Zamanakos, “A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving,” Computers & Graphics, p. 9577, 2021. [Google Scholar]
- J. E. B. S. Y. Alaba, “A survey on deep-learning-based lidar 3d object detection for autonomous driving,” Sensors, pp. 153–181, 2022. [PubMed] [Google Scholar]
- “wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/List_of_countries_by_rail_transport_network_size. [Accessed 07 2024]. [Google Scholar]
- R. A. Kromer, D. J. Hutchinson, M. J. Lato, D. Gauthier and T. Edwards, “Identifying rock slope failure precursors using LiDAR for transportation corridor hazard management,” Engineering Geology, vol. 195, pp. 93–103, 2015. [CrossRef] [Google Scholar]
- H. Lan, C. D. Martin, C. Zhou and C. H. Lim, “Rockfall hazard analysis using LiDAR and spatial modeling,” Geomorphology, vol. 118, pp. 213–223, 2010. [CrossRef] [Google Scholar]
- Z. a. Q. Y. a. J. L. a. X. Z. a. G. Y. a. W. Y. a. L. P. a. Y. Z. Cao, “Railway Intrusion Detection Based on Machine Vision: A Survey, Challenges, and Perspectives,” IEEE Transactions on Intelligent Transportation Systems, vol. 25, no. 7, pp. 6427–6448, 2024. [CrossRef] [Google Scholar]
- M. P. a. W. B. da Silva, “State-of-the-art technologies for intrusion and obstacle detection for railroad operations,” United States. Department of Transportation. Federal Railroad Administration, 2007. [Google Scholar]
- M. C. M. a. J. Y. Hasanujjaman, “Sensor fusion in autonomous vehicle with traffic surveillance camera system: detection, localization, and AI networking,” Sensors, p. 3335, 2023. [CrossRef] [PubMed] [Google Scholar]
- D. J. Yeong, G. Velasco-Hernandez, J. Barry and J. Walsh, “Sensor and sensor fusion technology in autonomous vehicles: A review,” Sensors, vol. 21, no. 6, p. 2104, 2021. [Google Scholar]
- W. Zhangyu, Y. Guizhen, W. Xinkai, L. Haoran and L. Da, “A camera and LiDAR data fusion method for railway object detection,” IEEE Sensors Journal, vol. 21, no. 12, pp. 13442–13454, 2021. [CrossRef] [Google Scholar]
- P. Wang, “Research on comparison of lidar and camera in autonomous driving.,” Journal of Physics: Conference Series, vol. 2093, no. 1, p. 012032, 2021. [CrossRef] [Google Scholar]
- D. a. J. M. a. Y. W. a. K. A. Lee, “LiDAR odometry survey: recent advancements and remaining challenges,” Intelligent Service Robotics, vol. 17, no. 2, pp. 95–118, 2024. [CrossRef] [Google Scholar]
- M. Ester, H.-P. Kriegel, J. Sander and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, Portland, EUA, 1996. [Google Scholar]
- A. C. A. B. a. I. B. Benabdellah, “A survey of clustering algorithms for an industrial context,” in Second International Conference on Intelligent Computing in Data Sciences (ICDS 2018), 2018. [Google Scholar]
- O. a. B. A. Kulkarni, “A Survey of Advancements in DBSCAN Clustering Algorithms for Big Data,” in 3rd International conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC), 2024. [Google Scholar]
- “Livox,” Online]. Available: https://www.livoxtech.com/tele-15. [Google Scholar]
- “u-blox,” [Online]. Available: https://www.u-blox.com/en/product/zed-f9p-module. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.