Open Access
Issue |
EPJ Web Conf.
Volume 305, 2024
6th International Conference on Applications of Optics and Photonics (AOP2024)
|
|
---|---|---|
Article Number | 00028 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/epjconf/202430500028 | |
Published online | 15 October 2024 |
- M.A. Butt, Integrated optics: platforms and fabrication methods, Encyclopedia 3, 824 (2023). [CrossRef] [Google Scholar]
- B. Lin, Y. Yi, Y. Cao, J. Lv, Y. Yang, F. Wang, X. Sun, D. Zhang, A polymer asymmetric mach–zehnder interferometer sensor model based on electrode thermal writing waveguide technology, Micromachines 10, 628 (2019). [CrossRef] [PubMed] [Google Scholar]
- R. Bruck, E. Melnik, P. Muellner, R. Hainberger, M. Lämmerhofer, Integrated polymerbased mach-zehnder interferometer label-free streptavidin biosensor compatible with injection molding, Biosensors and Bioelectronics 26, 3832 (2011). [CrossRef] [Google Scholar]
- Y. Xiao, E. Pichler, M. Hofmann, K. Bethmann, M. Köhring, U. Willer, H. Zappe, Towards integrated resonant and interferometric sensors in polymer films, Procedia Technology 15, 691 (2014). [CrossRef] [Google Scholar]
- J. Han, X. Wu, X. Ge, Y. Xie, G. Song, L. Liu, Y. Yi, Highly sensitive liquid mz waveguide sensor based on polymer suspended slot waveguide structure, Polymers 14, 3967 (2022). [CrossRef] [PubMed] [Google Scholar]
- C. Lemieux-Leduc, R. Guertin, M.A. Bianki, Y.A. Peter, All-polymer whispering gallery mode resonators for gas sensing, Optics express 29, 8685 (2021). [CrossRef] [PubMed] [Google Scholar]
- L. Zheng, N. Keppler, H. Zhang, P. Behrens, B. Roth, Planar polymer optical waveguide with metal-organic framework coating for carbon dioxide sensing, Advanced Materials Technologies 7, 2200395 (2022). [CrossRef] [Google Scholar]
- D. Niu, L. Wang, Q. Xu, M. Jiang, X. Wang, X. Sun, F. Wang, D. Zhang, Ultra-sensitive polymeric waveguide temperature sensor based on asymmetric mach– zehnder interferometer, Applied Optics 58, 1276 (2019). [CrossRef] [PubMed] [Google Scholar]
- D. Pandey, L. Bellentani, M. Villani, G. Albareda, P. Bordone, A. Bertoni, X. Oriols, A proposal for evading the measurement uncertainty in classical and quantum computing: application to a resonant tunneling diode and a mach-zehnder interferometer, Applied Sciences 9, 2300 (2019). [CrossRef] [Google Scholar]
- Z. Zhao, Z. Li, J. Niu, G. Zhang, H. Chen, X. Fu, L. Yang, Eight-channel LAN WDM (de) multiplexer based on cascaded Mach–Zehnder interferometer on SOI for 400GbE, in photonics (MDPI, 2022), Vol. 9, p. 252 [Google Scholar]
- S. Kumar, G. Singh, A. Bisht, S. Sharma, A. Amphawan, Proposed new approach to the design of universal logic gates using the electro-optic effect in mach–zehnder interferometers, Applied optics 54, 8479 (2015). [CrossRef] [PubMed] [Google Scholar]
- A. Psarouli, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, G. Jobst, K. Tukkiniemi, M. Sopanen, R. Stoffer et al., Monolithically integrated broad-band mach-zehnder interferometers for highly sensitive label-free detection of biomolecules through dual polarization optics, Scientific reports 5, 17600 (2015). [CrossRef] [PubMed] [Google Scholar]
- M. Janik, M. Koba, A. Celeban´ska, W.J. Bock, M. S´mietana, Live e. coli bacteria label-free sensing using a microcavity in-line mach-zehnder interferometer, Scientific reports 8, 17176 (2018). [CrossRef] [PubMed] [Google Scholar]
- M. Angelopoulou, D. Kourti, K. Misiakos, A. Economou, P. Petrou, S. Kakabakos, Machzehnder interferometric immunosensor for detection of aflatoxin m1 in milk, chocolate milk, and yogurt, Biosensors 13, 592 (2023). [CrossRef] [PubMed] [Google Scholar]
- H. Wang, Z. Chen, T. Li, H. Xie, B. Yin, S.H.D. Wong, Y. Shi, A.P. Zhang, Optofluidic chip with directly printed polymer optical waveguide machzehnder interferometer sensors for label-free biodetection, Biomedical Optics Express 15, 3240 (2024). [CrossRef] [PubMed] [Google Scholar]
- A.L. Siarkowski, L.F. Hernandez, B.H.V. Borges, N.I. Morimoto, Sensing based on mach-zehnder interferometer and hydrophobic thin films used on volatile organic compounds detection, Optical Engineering 51, 054401 (2012). [CrossRef] [Google Scholar]
- M. Hofmann, Y. Xiao, S. Sherman, U. Gleissner, T. Schmidt, H. Zappe, Asymmetric mach–zehnder interferometers without an interaction window in polymer foils for refractive index sensing, Applied optics 55, 1124 (2016). [CrossRef] [PubMed] [Google Scholar]
- Y. Xiao, M. Hofmann, Z. Wang, S. Sherman, H. Zappe, Design of all-polymer asymmetric mach– zehnder interferometer sensors, Applied optics 55, 3566 (2016). [CrossRef] [PubMed] [Google Scholar]
- R. Bernini, G. Testa, L. Zeni, P. Sarro, in Sensors and Microsystems: AISEM 2009 Proceedings (Springer, 2009), pp. 373–376 [Google Scholar]
- E. Fiedler, N. Haas, T. Stieglitz, Suitability of SU8, EpoClad and EpoCore for flexible waveguides on implantable neural probes, in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2014), pp. 438–441 [Google Scholar]
- M. Cˇehovski, J. Becker, O. Charfi, H.H. Johannes, C. Müller, W. Kowalsky, Single-mode polymer ridge waveguide integration of organic thin-film laser, Applied Sciences 10, 2805 (2020). [CrossRef] [Google Scholar]
- P. Gijsenbergh, K. Wouters, K. Vanstreels, R. Puers, Determining the physical properties of epoclad negative photoresist for use in mems applications, Journal of Micromechanics and Microengineering 21, 074001 (2011). [CrossRef] [Google Scholar]
- T. Guan, F. Ceyssens, R. Puers, An epoclad/epocorebased platform for moems fabrication, Journal of Micromechanics and Microengineering 23, 125005 (2013). [CrossRef] [Google Scholar]
- S. Hessler, M. Rüth, C. Sauvant, H.D. Lemke, B. Schmauss, R. Hellmann, Hemocompatibility of epocore/epoclad photoresists on coc substrate for optofluidic integrated bragg sensors, Sensors and Actuators B: Chemical 239, 916 (2017). [CrossRef] [Google Scholar]
- J. Tambasco, Modesolverpy (2018), https://github.com/jtambasco/modesolverpy [Google Scholar]
- G. Wang, J. Zhu, D. Wei, F. Jiang, Y. Huang, Enhanced air microcavity of channel spp waveguide halby graphene material, Plasmonics 14, 313 (2019). [CrossRef] [Google Scholar]
- Y. Liu, F. Li, C. Xu, Z. He, J. Gao, Y. Zhou, L. Xu, The design and research of a new hybrid surface plasmonic waveguide nanolaser, Materials 14, 2230 (2021). [CrossRef] [PubMed] [Google Scholar]
- C. Xu, E. Heller, M. Bahl, R. Scarmozzino, K.N. Ku, Y. Zhou, T. Su, P.C. Chang, C.Y. Lin, S.C. Chen et al., Suitability of BPM simulation for silicon pho-tonics, in 2021 IEEE 17th International Conference on Group IV Photonics (GFP) (IEEE, 2021), pp. 1–2 [Google Scholar]
- A. Kumar, S. Aditya, Performance of s-bends for integrated-optic waveguides, Microwave and Optical Technology Letters 19, 289 (1998). [CrossRef] [Google Scholar]
- R. Broeke, X. Leijtens, Nazca design (v0.5.13), https://nazca-design.org/ [Google Scholar]
- F.J. Gordo, J. Tátá, J. Borme, M.A. Geday, M. CañoGarcía, J.B. Nieder, Design and manufacture of an all-polymeric integrated multimode interferometer for visible photonics, Optics Express 30, 31147 (2022). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.