Open Access
Issue |
EPJ Web Conf.
Volume 310, 2024
Lecture Notes – Joint EPS-SIF International School on Energy 2023 – Course 7: Global Challenges for Energy Sustainability
|
|
---|---|---|
Article Number | 00006 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/epjconf/202431000006 | |
Published online | 06 November 2024 |
- Mitzi D., Wang S., Feild C., Chess C. and Guloy A., “Conducting layered organicinorganic halides containing (110)-oriented perovskite sheets”, Science, 267 (1994) 1473. [Google Scholar]
- Kagan C. R., Mitzi D. B. and Dimitrakopoulos C. D., “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors”, Science, 286 (1999) 945. [CrossRef] [PubMed] [Google Scholar]
- Kojima A., Teshima K., Shirai Y. and Miyasaka T., “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 131 (2009) 6050. [CrossRef] [PubMed] [Google Scholar]
- Junjie Zhou et al., “Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material”, Joule, 8 (2024) 1. [CrossRef] [Google Scholar]
- LONGi Green Energy Technology Co. Ltd., [Online]. Available: https://www.longi.com/us/. [Google Scholar]
- Abzieher T., Moore D. T., Roß M., Albrecht S., Silvia J., Tan H., Jeangros Q., Ballif C., Hoerantner M. T., Kim B.-S., Bolink H. J., Pistor P., Goldschmidt J. C., Chiang Y.-H. and Strank S. D., “Vapor phase deposition of perovskite photovoltaics: short track to commercialization?”, Energy Environ. Sci., 17 (2024) 1645. [CrossRef] [Google Scholar]
- Kosasih F. U., Erdenebileg E., Mathews N., Mhaisalkar S. G. and Bruno A., “Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules”, Joule, 6 (2022) 2692. [CrossRef] [Google Scholar]
- “Inkjet printed organic and perovskite photovoltaics—review and perspectives”, in: Organic Flexible Electronics, Woodhead Publishing Series in Electronic and Optical Materials (2021), pp. 305–333. [Google Scholar]
- Mathies F., List-Kratochvil E. J. W. and Unger E. L., “Advances in Inkjet-Printed Metal Halide Perovskite Photovoltaic and Optoelectronic Devices”, Energy Technol., 8 (2019) 1900991. [Google Scholar]
- Peng X., Yuan J., Shen S., Gao M., Chesman A. S. R., Yin H., Cheng J., Zhang Q. and Angmo D., “Perovskite and Organic Solar Cells Fabricated by Inkjet Printing: Progress and Prospects”, Adv. Funct. Mater., 27 (2017) 1703704. [CrossRef] [Google Scholar]
- Wei Z., Chen D. H., Yan D. K. and Yang P. S., “Inkjet Printing and Instant Chemical Transformation of a CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells”, Angew. Chem. Int. Ed., 53 (2014) 13239. [CrossRef] [PubMed] [Google Scholar]
- Li S.-G., Jiang K.-J., Su M.-J., Cui X.-P., Huang J.-H., Zhang Q.-Q., Zhou X.-Q., Yang L.-M. and Song Y.-L., “Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells”, J. Mater. Chem. A, 3 (2015) 9092. [CrossRef] [Google Scholar]
- Li Z., Li P., Chen G., Cheng Y., Pi X., Yu X., Yang D., Han L., Zhang Y. and Song Y., “Ink Engineering of Inkjet Printing Perovskite”, ACS Appl. Mater. Interfaces, 12 (2020) 39082. [CrossRef] [PubMed] [Google Scholar]
- Li P., Liang C., Bao B., Li Y., Hu X., Wang Y., Zhang Y., Li F., Shao G. and Song Y., “Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells”, Nano Energy, 46 (2018) 203. [CrossRef] [Google Scholar]
- Liang C., Li P., Gu H., Zhang Y., Li F., Song Y., Shao G., Mathews N. and Xing G., “One-step inkjet printed perovskite in air for efficient light harvesting”, Sol. RRL, 2 (2018) 1700217. [CrossRef] [Google Scholar]
- Chalkias D. A., Mourtzikou A., Katsagounos G., Kalarakis A. N. and Stathatos E., “Development of Greener and Stable Inkjet-Printable Perovskite Precursor Inks for All-Printed Annealing-Free Perovskite Solar Mini-Modules Manufacturing”, Small Methods, 7 (2023) 2300664. [CrossRef] [Google Scholar]
- Pathak C. S., Paramasivam G., Mathies F., Hirselandt K., Schro¨der V., Maus O., Dagar J., Klimm C., Unger E. and Visoly-Fisher I., ACS Appl. Energy Mater., 5 (2022) 4085. [CrossRef] [Google Scholar]
- Chen X.-Z., Luo Q. and Ma C.-Q., “Inkjet-Printed Organic Solar Cells and Perovskite Solar Cells: Progress, Challenges, and Prospect”, Chin. J. Polym. Sci., 41 (2023) 1169. [CrossRef] [Google Scholar]
- Patidar R., Burkitt D., Hooper K., Richards D. and Watson T., “Slot-die coating of perovskite solar cells: An overview”, Mater. Today Commun., 22 (2020) 100808. [CrossRef] [Google Scholar]
- Li Jinzhao et al., “Ink Design Enabling Slot-Die Coated Perovskite Solar Cells with > 22% Power Conversion Efficiency, Micro-Modules, and 1 Year of Outdoor Performance Evaluation”, Adv. Energy Mater., 13 (2023) 2203898. [CrossRef] [Google Scholar]
- Vak D., Hwang K., Faulks A., Jung Y.-S., Clark N., Kim D.-Y., Wilson G. J. and Watkins S. E., “3D Printer Based Slot-Die Coater as a Lab-to-Fab Translation Tool for Solution-Processed Solar Cells”, Adv. Energy Mater., 5 (2015) 1401539. [CrossRef] [Google Scholar]
- Hwang K., Jung Y.-S., Heo Y.-J., Scholes F. H., Watkins S. E., Subbiah J., Jones D. J., Kim D.-Y. and Vak D., “Toward large scale roll-to-roll production of fully printed perovskite solar cells”, Adv. Mater., 27 (2015) 1241. [CrossRef] [PubMed] [Google Scholar]
- Fievez Mathilde et al., “Slot-die coated methylammonium-free perovskite solar cells with”, Solar Energy Mater. Solar Cells, 230 (2021) 111189. [CrossRef] [Google Scholar]
- Giacomo F. D., Shanmugam S., Fledderus H., Bruijnaers B. J., Verhees W. J., Dorenkamper M. S., Veenstra S. C., Qiu W., Gehlhaar R., Merckx T., Aernouts T., Andriessen R. and Galagan Y., “Up-scalable sheet-to-sheet production of high-efficiency perovskite module and solar cells on 6-in. substrate using slot die coating”, Solar Energy Mater. Solar Cells, 181 (2018) 53. [CrossRef] [Google Scholar]
- Li J., Dagar J., Shargaieva O., Maus O., Remec M., Emery Q., Khenkin M., Ulbrich C., Akhundova F., Ma´rquez J. A., Unold T., Fenske M., Schultz C., Stegemann B., Al-Ashouri A. and Albrecht S., “Ink Design Enabling Slot-Die Coated Perovskite Solar Cells with > 22% Power Conversion Efficiency, Micro-Modules, and 1 Year of Outdoor Performance Evaluation”, Adv. Energy Mater., 13 (2023) 2203898. [CrossRef] [Google Scholar]
- Rana P. J. S. et al., “Molecular Locking with All-Organic Surface Modifiers Enables Stable and Efficient Slot-Die-Coated Methyl-Ammonium-Free Perovskite Solar Modules”, Adv. Mater., 35 (2023) 2210176. [CrossRef] [Google Scholar]
- Lin Baojun et al., “Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses”, Energy Environ. Sci., 13 (2020) 2467. [CrossRef] [Google Scholar]
- Zhao Heng et al., “Hot Hydrocarbon-Solvent Slot-Die Coating Enables High-Efficiency Organic Solar Cells with Temperature-Dependent Aggregation Behavior”, Adv. Mater., 32 (2020) 2002302. [CrossRef] [Google Scholar]
- Alanazi T. I., “Current spray-coating approaches to manufacture perovskite solar cells”, Results Phys., 44 (2023) 106144. [CrossRef] [Google Scholar]
- Barrows A. T., Pearson A. J., Kwak C. K., Dunbar A. D. F., Buckleya A. R. and Lidzey D. G., “Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition”, Energy Environ. Sci., 7 (2014) 2944. [CrossRef] [Google Scholar]
- Liu Y., Bag M., Renna L. A., Page Z. A., Kim P., Emrick T., Venkataraman D. and Russell T. P., “Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells”, Adv. Energy Mater., 6 (2016) 1501606. [CrossRef] [Google Scholar]
- Chou L.-H., Yu Y.-T., Wang X.-F., Osaka I., Wu C.-G. and Liu C.-L., “Sequential Ultrasonic Spray-Coating Planar Three Layers for 1 cm2 Active Area Inverted Perovskite Solar Cells”, Energy Technol., 8 (2020) 2000216. [CrossRef] [Google Scholar]
- Kim S. S., Heo J. H. and Im S. H., “Wetting-induced formation of void-free metal halide perovskite films by green ultrasonic spray coating for large-area mesoscopic perovskite solar cells”, RSC Adv., 10 (2020) 33651. [CrossRef] [PubMed] [Google Scholar]
- Kim S., Heo J. and Im S., “Wetting-induced formation of void-free metal halide perovskite films by green ultrasonic spray coating for large-area mesoscopic perovskite solar cells”, RSC Adv., 10 (2020) 33651. [CrossRef] [PubMed] [Google Scholar]
- Swartwout R., Hoerantner D. M. T. and Bulovic´ D. V., “Scalable Deposition Methods for Large-area Production of Perovskite Thin Films”, Energy Environ. Mater., 2 (2019) 119. [CrossRef] [Google Scholar]
- Higuchi H. and Negami T., “Largest highly efficient 203 × 203 mm2 CH3NH3PbI3 perovskite solar modules”, Jpn. J. Appl. Phys., 57 (2018) 08RE11. [CrossRef] [Google Scholar]
- Agresti A., Pescetelli S., Palma A. L., Mart´ın-Garc´ıa B., Najafi L., Bellani S., Moreels I., Prato M., Bonaccorso F. and Carlo A. A. D., “Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules”, ACS Energy Lett., 4 (2019) 1862. [CrossRef] [Google Scholar]
- Pescetelli S., Agresti A., Razza S., Castriotta L. A. and Carlo A. D., “Large area perovskite solar modules with improved efficiency and stability”, 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rome, Italy, 2019. [Google Scholar]
- Bu T., Liu X., Li J., Huang W., Wu Z., Huang F., Cheng Y.-B. and Zhong J., “Dynamic Antisolvent Engineering for Spin Coating of 10 × 10 cm2 Perovskite Solar Module Approaching 18%”, Solar RRL, 4 (2020) 1900263. [CrossRef] [Google Scholar]
- Tong G., Ono L. K., Liu Y., Zhang H., Bu T. and Qi Y., “Up-Scalable Fabrication of SnO2 with Multifunctional Interface for High Performance Perovskite Solar Modules”, Nano-Micro Lett., 13 (2021) 155. [CrossRef] [PubMed] [Google Scholar]
- Pescetelli S., Agresti A., Razza S., Poznyak A. I., Najafi L., Bonaccorso F. and Carlo A. A. D., “Synergic use of two-dimensional materials to tailor interfaces in large area perovskite modules”, Nano Energy, 95 (2022) 107019. [CrossRef] [Google Scholar]
- Pescetelli S., Agresti A., Viskadouros G., Razza S., Rogdakis K., Kalogerakis I., Spiliarotis E., Leonardi E., Mariani P., Sorbello L., Pierro M., Cornaro C., Bellani S., Najafi L. and Beatriz M.-G., “Integration of two-dimensional materialsbased perovskite solar panels into a stand-alone solar farm”, Nature Energy, 7 (2022) 597. [CrossRef] [Google Scholar]
- Vidal Rosario et al., “Assessing health and environmental impacts of solvents for producing perovskite solar cells”, Nature Sustainability, 4 (2021) 1. [Google Scholar]
- Bruening Karsten et al., “Scalable Fabrication of Perovskite Solar Cells”, Joule, 2 (2018) 2464. [CrossRef] [Google Scholar]
- Dai X., Deng Y., Brackle C. H. V., Chen S., Rudd P. N., Xiao X., Lin Y., Chen B. and Huang J., “Scalable Fabrication of Efficient Perovskite Solar Modules on Flexible Glass Substrates”, Adv. Energy Mater., 10 (2020) 1903. [Google Scholar]
- Mengjin Y., Hoe K. D., Klein T. R., Zhen L., Reese M. O., Tremolet de Villers B. J., Berry J. J., van Hest M. F. A. M. and Kai Z., “Highly efficient perovskite solar modules by scalable fabrication and interconnection optimization”, ACS Energy Lett., 3 (2018) 322. [CrossRef] [Google Scholar]
- Deng Y., Brackle C. H. V., Dai X., Zhao J., Chen B. and Huang J., “Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films”, Sci. Adv., 5 (2019) eaax7537. [CrossRef] [Google Scholar]
- Uddin M. A. et al., “Iodide manipulation using zinc additives for efficient perovskite solar minimodules”, Nat. Commun., 15 (2024) 1355. [CrossRef] [Google Scholar]
- Swartwout R., Hoerantner M. T. and Bulovic´ D. V., “Scalable Deposition Methods for Large-area Production of Perovskite Thin Films”, Energy Environ. Sci., 2 (2019) 119. [Google Scholar]
- Raiford J. A., Oyakhire S. T. and Bent S. F., “Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells”, Energy Environ. Sci., 13 (2020) 1997. [CrossRef] [Google Scholar]
- Lewis D. J. and O’Brien P., “Ambient pressure aerosol-assisted chemical vapour deposition of (CH3NH3)PbBr3, an inorganic–organic perovskite important in photovoltaics”, Chem. Commun., 50 (2014) 6319. [CrossRef] [PubMed] [Google Scholar]
- Liu M., Johnston M. B. and Snaith H. J., “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, 501 (2013) 395. [CrossRef] [PubMed] [Google Scholar]
- Borchert J., Milot R. L., Patel J. B., Davies C. L., Wright A. D., Maestro L. M., Snaith H. J., Herz L. M. and Johnston M. B., “Large-Area, Highly Uniform Evaporated Formamidinium Lead Triiodide Thin Films for Solar Cells”, ACS Energy Lett., 2 (2017) 2799. [CrossRef] [Google Scholar]
- Leyden M. R., Ono L. K., Raga S. R., Kato Y., Wanga S. and Qi Y., “High performance perovskite solar cells by hybrid chemical vapor deposition”, J. Mater. Chem. A, 2 (2014) 18742. [CrossRef] [Google Scholar]
- Peng Y., Jing G. and Cui T., “A hybrid physical–chemical deposition process at ultralow temperatures for high-performance perovskite solar cells”, J. Mater. Chem. A, 3 (2015) 12436. [CrossRef] [Google Scholar]
- Shen P.-S., Chen J.-S., Chiang Y.-H., Li M.-H., Guo T.-F. and Chen P., “LowPressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and LargeArea Module”, Adv. Mater. Interfaces, 3 (2016) 1500849. [CrossRef] [Google Scholar]
- Feleki B. T., Weijtens C. H. L., Wienk M. M. and Janssen R. A. J., “Thin Thermally Evaporated Organic Hole Transport Layers for Reduced Optical Losses in Substrate-Configuration Perovskite Solar Cells”, ACS Appl. Energy Mater., 4 (2021) 3033. [CrossRef] [Google Scholar]
- Farag Ahmed et al., “Evaporated Self-Assembled Monolayer Hole Transport Layers: Lossless Interfaces in p-i-n Perovskite Solar Cells”, Adv. Energy Mater., 13 (2023) 2203982. [CrossRef] [Google Scholar]
- Da¨nekamp B., Mu¨ller C., Sendner M., Boix P. P., Sessolo M., Lovrincic R. and Bolink H. J., “Perovskite–Perovskite Homojunctions via Compositional Doping”, J. Phys. Chem. Lett., 9 (2018) 2770. [CrossRef] [Google Scholar]
- Li J., Dewi H. A., Wang H., Zhao J., Tiwari N., Yantara N., Malinauskas T., Getautis V., Savenije T. J., Mathews N., Mhaisalkar S. and Bruno A., “CoEvaporated MAPbI3 with Graded Fermi Levels Enables Highly Performing, Scalable, and Flexible p-i-n Perovskite Solare Cells”, Adv. Funct. Mater., 31 (2021) 2103252. [CrossRef] [Google Scholar]
- Patel J. B., Wright A. D., Lohmann K. B., Peng K., Xia C. Q., Ball J. M., Noel N. K., Crothers T. W., Wong-Leung J., Snaith H. J., Herz L. M. and Johnston M. B., “Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices”, Adv. Energy Mater., 10 (2020) 1903653. [CrossRef] [Google Scholar]
- Roldan-Carmona C., Malinkiewicz O., Soriano A., Espallargas G. M., Garcia A., Reinecke P., Kroyer T., Dar M. I., Nazeeruddine M. K. and Bolink H. J., “Flexible high-efficiency perovskite solar cells”, Energy Environ. Sci., 7 (2014) 994. [CrossRef] [Google Scholar]
- Nguyen V. S., Zimmermann I., Gre´pin E., Medjoubi K., Jutteau S., Donsanti F., Bruhat E., Duchatelet A., Berson S. and Rousse J., “Solvent-vapor assisted conversion process for hybrid perovskites coupling thermal evaporation and slot-die coating”, Mater. Sci. Semicond. Process., 158 (2023) 107358. [CrossRef] [Google Scholar]
- Behrouznejad F., “Reactive e-beam evaporated SnOx layer as an effective ETL for highly efficient spray-coated perovskite solar cells”, Mater. Chem. Phys., 203 (2023) 128086. [CrossRef] [Google Scholar]
- Abzieher T., Mathies F., Hetterich M., Welle A., Gerthsen D., Lemmer U., Paetzold U. W. and Powalla M., “Additive-Assisted Crystallization Dynamics in Two-Step Fabrication of Perovskite Solar Cells”, PSS(a) – Appl. Mater. Sci., 214 (2017) 1700509. [Google Scholar]
- Rakita Y., Gupta S., Cahen D. and Hodes G., “Metal to Halide Perovskite (HaP): An Alternative Route to HaP Coating, Directly from Pb(0) or Sn(0) Films”, Chem. Mater., 29 (2017) 8620. [CrossRef] [Google Scholar]
- Roß M., Gil-Escrig L., Al-Ashouri A., Tockhorn P., Joˇst M., Rech B. and Albrecht S., “Co-Evaporated p-i-n Perovskite Solar Cells beyond 20% Efficiency: Impact of Substrate Temperature and Hole-Transport Layer”, ACS Appl. Mater. Interfaces, 12 (2020) 39261. [CrossRef] [PubMed] [Google Scholar]
- Kottokkaran R., Gaonkar H. A., Abbas H. A., Noack M. and Dalal V., “Performance and stability of co-evaporated vapor deposited perovskite solar cells”, J. Mater. Sci. Mater. Electron., 30 (2019) 5487. [CrossRef] [Google Scholar]
- Saliba M., Matsui T., Seo J.-Y., Domanski K., Correa-Baena J.-P., Nazeeruddin M. K., Zakeeruddin S. M., Tress W., Abate A., Hagfeldtd A. and Gra¨tzel M., “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency”, Energy Environ. Sci., 9 (2016) 1989. [CrossRef] [PubMed] [Google Scholar]
- Beom-Soo Kim, Lido´n Gil-Escrig, Michele Sessolo and Henk J. Bolink, “Deposition Kinetics and Compositional Control of Vacuum-Processed CH3NH3PbI3 Perovskite”, J. Phys. Chem. Lett., 11 (2020) 6852. [CrossRef] [Google Scholar]
- Gallet T., Poeira R. G., Lanzoni E. M., Abzieher T., Paetzold U. W. and Redinger A., “Co-evaporation of CH3NH3PbI3: How Growth Conditions Impact Phase Purity, Photostriction, and Intrinsic Stability”, ACS Appl. Mater. Interfaces, 13 (2021) 2642. [CrossRef] [PubMed] [Google Scholar]
- Liu Y., Tan X., Liang J., Han H., Xiang P. and Yan W., “Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects”, Adv. Funct. Mater., 33 (2023) 2214271. [CrossRef] [Google Scholar]
- Hui Z., Wang M., Yin X., Wang Y. and Yue Y., “Machine learning for perovskite solar cell design”, Comput. Mater. Sci., 226 (2023) 112215. [CrossRef] [Google Scholar]
- Chen C., Maqsood A. and Jacobsson T. J., “The role of machine learning in perovskite solar cell research”, J. Alloys Comp., 960 (2023) 170824. [CrossRef] [Google Scholar]
- Wang J., Qi Y., Zheng H., Wang R., Bai S., Liu Y., Liu Q., Xiao J., Zou D. and Hou S., “Advancing vapor-deposited perovskite solar cells via machine learning”, J. Mater. Chem. A, 11 (2023) 13201. [CrossRef] [Google Scholar]
- Arivazhagan V., Xie J., Yang Z., Hang P., Parvathi M. M., Xiao K., Cui C., Yang D. and Yu X., “Vacuum co-deposited CH3NH3PbI3 films by controlling vapor pressure for efficient planar perovskite solar cells”, Solar Energy, 181 (2019) 339. [CrossRef] [Google Scholar]
- Piot M., Alonso J. E. S., Zanoni K. P. S., Rodkey N., Ventosinos F., Rolda´nCarmona C., Sessolo M. and Bolink H., “Fast Coevaporation of 1 μm Thick Perovskite Solar Cell”, ACS Energy Lett., 11 (2023) 8. [Google Scholar]
- Pe´rez-del-Rey D., Boix P. P., Sessolo M., Hadipour A. and Bolink H. J., “Interfacial Modification for High-Efficiency Vapor-Phase-Deposited Perovskite Solar Cells Based on a Metal Oxide Buffer Layer”, J. Phys. Chem. Lett., 9 (2018) 1041. [CrossRef] [Google Scholar]
- Dewi H. A., Li J., Wang H., Chaudhary B., Mathews N., Mhaisalkar S. and Bruno A., “Excellent Intrinsic Long-Term Thermal Stability of Co-Evaporated MAPbI3 Solar Cells at 85 °C”, Adv. Funct. Mater., 31 (2021) 2100557. [CrossRef] [Google Scholar]
- Gil-Escrig L., Momblona C., La-Placa M.-G., Boix P. P., Sessolo M. and Bolink H. J., “Vacuum Deposited Triple-Cation Mixed-Halide Perovskite Solar Cells”, Adv. Energy Mater., 8 (2018) 1703506. [CrossRef] [Google Scholar]
- Longo G., Momblona C., La-Placa M.-G., Gil-Escrig L., Sessolo M. and Bolink H. J., “Fully Vacuum-Processed Wide Band Gap Mixed-Halide Perovskite Solar Cells”, ACS Energy Lett., 3 (2018) 214. [CrossRef] [Google Scholar]
- Wang S., Tan L., Zhou J., Li M., Zhao X., Li H., Tress W., Ding L., Graetzel M. and C. Y., “Over 24% efficient MA-free CsxFA(1−x)PbX3 perovskite solar cells”, Joule, 6 (2022) 1344. [CrossRef] [Google Scholar]
- Ng A. et al., “Efficiency enhancement by defect engineering in perovskite photovoltaic cells prepared using evaporated PbI2/CH3NH3I multilayers”, J. Mater. Chem. A, 3 (2015) 9223. [CrossRef] [Google Scholar]
- Yang D., Yang Z., Qin W., Zhang Y., Liu S. F. and Li C., “Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition”, J. Mater. Chem. A, 3 (2015) 9401. [CrossRef] [Google Scholar]
- Ma Q., Huang S., Chen S., Zhang M., Lau C. F. J., Lockrey M. N., Mulmudi H. K., Shan Y., Yao J., Zheng J., Deng X., Catchpole K., Green M. A. and HoBaillie A. W. Y., “The Effect of Stoichiometry on the Stability of Inorganic Cesium Lead Mixed-Halide Perovskites Solar Cells”, J. Phys. Chem. C, 121 (2017) 19642. [CrossRef] [Google Scholar]
- Frolova L. A., Anokhin D. V., Piryazev A. A., Luchkin S. Y., Dremova N. N., Stevenson K. J. and Troshin P. A., “Highly Efficient All-Inorganic Planar Heterojunction Perovskite Solar Cells Produced by Thermal Coevaporation of CsI and PbI2”, J. Phys. Chem. Lett., 8 (2017) 67. [CrossRef] [Google Scholar]
- Frolova L. A. et al., “Efficient and stable all-inorganic perovskite solar cells based on nonstoichiometric CsxPbI2Brx (x> 1) alloys”, J. Mater. Chem. C, 7 (2019) 5314. [CrossRef] [Google Scholar]
- Wang H., Li J., Dewi H. A., Mathews N., Mhaisalkar S. and Bruno A., “Colorful Perovskite Solar Cells: Progress, Strategies, and Potentials”, J. Phys. Chem. Lett., 12 (2021) 1321. [CrossRef] [Google Scholar]
- Wang H., Dewi H. A., Koh T. M., Bruno A., Mhaisalkar S. and Mathews A. N., “Bifacial, Color-Tunable Semitransparent Perovskite Solar Cells for Building-Integrated Photovoltaics”, ACS Appl. Mater. Interfaces, 12 (2020) 484. [CrossRef] [PubMed] [Google Scholar]
- Li J., Wang H., Chin X. Y., Dewi H. A., Vergeer K., Goh T. W., Lim J. W. M., Lew J. H., Loh K. P., Soci C., Sum T. C., Bolink H. J., Mathews N., Mhaisalkar S. and Bruno A., “Highly efficient thermally co-evaporated perovskite solar cells and mini-modules”, Joule, 4 (2020) 1035. [CrossRef] [MathSciNet] [Google Scholar]
- Roldan-Carmona C., Malinkiewicz O., Betancur R., Longo G., Momblona C., Camachob L. and Bolink H. J., “High efficiency single-junction semitransparent perovskite solar cells”, : Energy Environ. Sci., 7 (2014) 2968. [Google Scholar]
- Lie S., Bruno A., Wong L. H. and Etgar L., “Semitransparent Perovskite Solar Cells with > 13% Efficiency and 27% Transperancy Using Plasmonic Au Nanorods”, ACS Appl. Mater. Interfaces, 14 (2022) 11339. [CrossRef] [PubMed] [Google Scholar]
- Zhang Z., Ji R., Jia X., Wang S.-J., Deconinck M., Siliavka E. and Vaynzof Y., “Semitransparent Perovskite Solar Cells with an Evaporated Ultra-Thin Perovskite Absorber”, Adv. Funct. Mater., (2023) 2307471. [CrossRef] [Google Scholar]
- Zanoni K. P. S., Paliwal A., Herna´ndez-Fenollosa M. A., Repecaud P.-A., Morales-Masis M. and Bolink H. J., “ITO Top-Electrodes via Industrial-Scale PLD for Efficient Buffer-Layer-Free Semitransparent Perovskite Solar Cells”, Adv. Mater. Technol., 7 (2022) 2101747. [CrossRef] [Google Scholar]
- Li J., Wang H., Chin X. Y., Dewi H. A., Vergeer K. et al., “Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules”, Joule, 4 (2020) 1035. [CrossRef] [MathSciNet] [Google Scholar]
- Li J., Wang H., Dewi H. A., Mathews N., Mhaisalkar S. and Bruno A., “Potassium Acetate-Based Treatment for Thermally”, Coatings, 10 (2020) 1163. [CrossRef] [Google Scholar]
- Li J., Wang H., Dewi H. A., Mathews N., Mhaisalkar S. and Bruno A., “Potassium Acetate-Based Treatment for Thermally Co-Evaporated Perovskite Solar Cells”, Coatings, 10 (2020) 1163. [CrossRef] [Google Scholar]
- Li J., Dewi H. A., Wang H., Lew J. H., Mathews N., Mhaisalkar S. and Bruno A., “Design of Perovskite Thermally Co-Evaporated Highly Efficient Mini-Modules with High Geometrical Fill Factors”, Solar RRL, 4 (2020) 2000473. [CrossRef] [Google Scholar]
- Feng J., Jiao Y., Wang H., Zhu X., Sun Y., Du M., Cao Y., Yang D. and Liu S. F., “High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells”, Energy Environ. Sci., 14 (2021) 3035. [CrossRef] [Google Scholar]
- Li H. et al., “Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency”, Sci. Adv., 8 (2022) eabo7422. [CrossRef] [Google Scholar]
- Li K. et al., “Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of ∼ 14%”, ACS Appl. Energy Mater., 1 (2018) 3565. [CrossRef] [Google Scholar]
- Qiu L. et al., “Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency”, J. Mater. Chem. A, 7 (2019) 6920. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.