Open Access
Issue |
EPJ Web Conf.
Volume 310, 2024
Lecture Notes – Joint EPS-SIF International School on Energy 2023 – Course 7: Global Challenges for Energy Sustainability
|
|
---|---|---|
Article Number | 00007 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/epjconf/202431000007 | |
Published online | 06 November 2024 |
- Green M. A., Dunlop E. D., Siefer G., Yoshita M., Kopidakis N., Bothe K. and Hao X., “Solar cell efficiency tables (Version 61)”, Progr. Photovoltaics: Res. Appl., 31 (2023) 3, https://doi.org/10.1002/pip.3646. [CrossRef] [Google Scholar]
- Bathey B. R. and Cretella M. C., “Solar-grade silicon”, J. Mater Sci., 17 (1982) 3077, https://doi.org/10.1007/BF01203469. [CrossRef] [Google Scholar]
- Ranjan S., Balaji S., Panella R. A. and Ydstie B. E., “Silicon solar cell production”, Comput. Chem. Eng., 35 (2011) 1439, https://doi.org/10.1016/j.compchemeng.2011.04.017. [CrossRef] [Google Scholar]
- Rajkanan K., Singh R. and Shewchun J., “Absorption coefficient of silicon for solar cell calculations”, Solid State Electron., 22 (1979) 793, https://doi.org/10.1016/0038-1101(79)90128-X. [CrossRef] [Google Scholar]
- Sopori B. L. and Pryor R. A., “Design of antireflection coatings for textured silicon solar cells”, Solar Cells, 8 (1983) 249, https://doi.org/10.1016/0379-6787(83)90064-9. [CrossRef] [Google Scholar]
- Yerokhov V. Y., Hezel R., Lipinski M., Ciach R., Nagel H., Mylyanych A. and Panek P., “Cost-effective methods of texturing for silicon solar cells”, Solar Energy Mater. Solar Cells, 72 (2002) 291, https://doi.org/10.1016/S0927-0248(01)00177-5. [CrossRef] [Google Scholar]
- Nijs J. F., Szlufcik J., Poortmans J. and Sivoththaman S., “Advanced manufacturing concepts for crystalline silicon solar cells”, IEEE Trans. Electron Devices, 46 (1999) 1948, https://doi.org/10.1109/16.791983. [CrossRef] [Google Scholar]
- Geisz J. F., France R. M., Schulte K. L., Steiner M. A., Norman A. G., Guthrey H. L., Young M. R., Song T. and Moriarty T., “Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration”, Nat. Energy, 5 (2020) 326, https://doi.org/10.1038/s41560-020-0598-5. [CrossRef] [Google Scholar]
- Gaspari F. and Quaranta S., “Photovoltaic Materials”, Comprehens. Energy Syst., 2–5 (2018) 117, https://doi.org/10.1016/B978-0-12-809597-3.00215-7. [CrossRef] [Google Scholar]
- Romeo A., “CdTe Solar Cells”, McEvoy’s Handbook of Photovoltaics: Fundamentals and Applications (Elsevier) 2018, pp. 309–369, https://doi.org/10.1016/B978-0-12809921-6.00009-4. [CrossRef] [Google Scholar]
- Zhang X., Xu W., Wang S., Liu D., Deng P., Deng J. and Jiang W., “Research Status of Recovery of Tellurium from Cadmium Telluride Photovoltaic Modules”, IOP Conf. Ser. Mater. Sci. Eng., 782 (2020) 022024, https://doi.org/10.1088/1757-899X/782/2/022024. [CrossRef] [Google Scholar]
- Selmane N., Cheknane A., Khemloul F., Helal M. H. S. and Hilal H. S., “Costsaving and performance-enhancement of CuInGaSe solar cells by adding CuZnSnSe as a second absorber”, Solar Energy, 234 (2022) 64, https://doi.org/10.1016/j.solener.2022.01.072. [CrossRef] [Google Scholar]
- Fthenakis V. M. and Bulawka A. O., “Photovoltaics, Environmental Impact of”, Encyclopedia of Energy, Vol. 5, (Elsevier) 2004, pp. 61–69, https://doi.org/10.1016/B0-12-176480-X/00421-6. [CrossRef] [Google Scholar]
- Romeo A. and Artegiani E., “CdTe-Based Thin Film Solar Cells: Past, Present and Future”, Energies (Basel), 14 (2021) 1684, https://doi.org/10.3390/en14061684. [CrossRef] [Google Scholar]
- Liu K., Jiang Y., Ran G., Liu F., Zhang W. and Zhu X., “19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors”, Joule, 8 (2024) 835, https://doi.org/10.1016/j.joule.2024.01.005. [CrossRef] [Google Scholar]
- Fu Q. and Jen A. K. Y., “Perovskite solar cell developments, what’s next?”, Next Energy, 1 (2023) 100004, https://doi.org/10.1016/j.nxener.2023.100004. [CrossRef] [Google Scholar]
- Hao M., Ding S., Gaznaghi S., Cheng H. and Wang L., “Perovskite Quantum Dot Solar Cells: Current Status and Future Outlook”, ACS Energy Lett., 9 (2024) 308, https://doi.org/10.1021/acsenergylett.3c01983. [CrossRef] [Google Scholar]
- Sekaran P. D. and Marimuthu R., “An Extensive Analysis of Dye-Sensitized Solar Cell (DSSC)”, Braz. J. Phys., 54 (2023) 28, https://doi.org/10.1007/s13538-023-01375-w. [Google Scholar]
- Liu X., Xiao X., Yang Y., Xue D. J., Li D. B., Chen C., Lu S., Gao L., He Y., Beard M. C., Wang G., Chen S. and Tang J., “Enhanced Sb2Se3 solar cell performance through theory-guided defect control”, Progr. Photovolt.: Res. Appl., 25 (2017) 861, https://doi.org/10.1002/pip.2900. [CrossRef] [Google Scholar]
- Mavlonov A., Razykov T., Raziq F., Gan J., Chantana J., Kawano Y., Nishimura T., Wei H., Zakutayev A., Minemoto T., Zu X., Li S. and Qiao L., “A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells”, Solar Energy, 201 (2020) 227, https://doi.org/10.1016/j.solener.2020.03.009. [CrossRef] [Google Scholar]
- Tideswell N. W., Kruse F. H. and McCullough J. D., “The crystal structure of antimony selenide, Sb2Se3”, Acta Crystallogr, 10 (1957) 99, https://doi.org/10.1107/S0365110X57000298. [CrossRef] [Google Scholar]
- Ghosh S., Moreira M. V. B., Fantini C. and Gonza´lez J. C., “Growth and optical properties of nanocrystalline Sb2Se3 thin-films for the application in solar-cells”, Solar Energy, 211 (2020) 613, https://doi.org/10.1016/J.SOLENER.2020.10.001. [CrossRef] [Google Scholar]
- Chen C., Li W., Zhou Y., Chen C., Luo M., Liu X., Zeng K., Yang B., Zhang C., Han J. and Tang J., “Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation”, Appl. Phys. Lett., 107 (2015) 043905, https://doi.org/10.1063/1.4927741. [CrossRef] [Google Scholar]
- Pasini S., Spoltore D., Parisini A., Foti G., Marchionna S., Vantaggio S., Fornari R. and A. Bosio, “Sb2Se3 Polycrystalline Thin Films Grown on Different Window Layers”, Coatings, 13 (2023) 338, https://doi.org/10.3390/coatings13020338. [CrossRef] [Google Scholar]
- Romeo N., Bosio A., Canevari V. and Podesta` A., “Recent progress on CdTe/CdS thin film solar cells”, Solar Energy, 77 (2004) 795, https://doi.org/10.1016/j.solener.2004.07.011. [CrossRef] [Google Scholar]
- Li Y., Zhou Y., Zhu Y., Chen C., Luo J., Ma J., Yang B., Wang X., Xia Z. and Tang J., “Characterization of Mg and Fe doped Sb2Se3 thin films for photovoltaic application”, Appl. Phys. Lett., 109 (2016) 232104, https://doi.org/10.1063/1.4971388. [CrossRef] [Google Scholar]
- Chen C., Bobela D. C., Yang Y., Lu S., Zeng K., Ge C., Yang B., Gao L., Zhao Y., Beard M. C. and Tang J., “Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics”, Front. Optoelectron., 10 (2017) 18, https://doi.org/10.1007/s12200-017-0702-z. [CrossRef] [Google Scholar]
- Chen C., Li K. and Tang J., “Ten Years of Sb2Se3 Thin Film Solar Cells”, Solar RRL, 6 (2022) 2200094, https://doi.org/10.1002/solr.202200094. [CrossRef] [Google Scholar]
- Zhou Y., Wang L., Chen S., Qin S., Liu X., Chen J., Xue D.-J., Luo M., Cao Y., Cheng Y., Sargent E. H. and Tang J., “Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries”, Nat. Photon., 9 (2015) 409, https://doi.org/10.1038/nphoton.2015.78. [CrossRef] [Google Scholar]
- Romeo N., Bosio A. and Canevari V., “The role of CdS preparation method in the performance of CdTe/CdS thin film solar cell”, Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003, Vol. 1, pp. 469–470. [Google Scholar]
- Tung R. T., “The physics and chemistry of the Schottky barrier height”, Appl. Phys. Rev., 1 (2014) 011304, https://doi.org/10.1063/1.4858400. [CrossRef] [Google Scholar]
- Romeo N., Bosio A., Canevari V. and Podesta` A., “Recent progress on CdTe/CdS thin film solar cells”, Solar Energy, 77 (2004) 795, https://doi.org/10.1016/j.solener.2004.07.011. [CrossRef] [Google Scholar]
- Zhang M.-J., Lin Q., Yang X., Mei Z., Liang J., Lin Y. and Pan F., “Novel pType Conductive Semiconductor Nanocrystalline Film as the Back Electrode for HighPerformance Thin Film Solar Cells”, Nano Lett., 16 (2016) 1218, https://doi.org/10.1021/acs.nanolett.5b04510. [CrossRef] [PubMed] [Google Scholar]
- Pasini S., Spoltore D., Parisini A., Marchionna S., Fornasini L., Bersani D., Fornari R. and Bosio A., “Innovative back-contact for Sb2Se3-based thin film solar cells”, Solar Energy, 249 (2023) 414, https://doi.org/10.1016/j.solener.2022.11.049. [CrossRef] [Google Scholar]
- Pang C. S. B., Ng W., Liang J., Qu Q., Chau H. T. M., Niu M., Cheng M. K. and Sou I. K., “A Simple Thermoelectric Effect Setup for Determining the Conductivity Type of Thin Film Materials”, IEEE Trans. Instrum. Meas., 70 (2021) 1502007, https://doi.org/10.1109/TIM.2020.3046922. [Google Scholar]
- van der Pauw L. J., “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape”, in: Semiconductor Devices: Pioneering Papers, edited by S. M. Sze (World Scientific), pp. 174–182. https://doi.org/10.1142/97898145034640017. [Google Scholar]
- Cordes H. and Schmid-Fetzert R., “Electrical properties and contact metallurgy of elemental (Cu, Ag, Au, Ni) and compound contacts on p-Cd095Zn0.05Te”, Semicond. Sci. Technol., 10 (1995) 77, https://doi.org/10.1088/0268-1242/10/1/013. [CrossRef] [Google Scholar]
- Assmann L., Berne`de J. C., Drici A., Amory C., Halgand E. and Morsli M., “Study of the Mo thin films and Mo/CIGS interface properties”, Appl. Surf. Sci., 246 (2005) 159, https://doi.org/10.1016/j.apsusc.2004.11.020. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.