Open Access
Issue
EPJ Web Conf.
Volume 311, 2024
The Fifth International Workshop on State of the Art in Nuclear Cluster Physics (SOTANCP5)
Article Number 00029
Number of page(s) 6
DOI https://doi.org/10.1051/epjconf/202431100029
Published online 28 October 2024
  1. J.P. Elliott, Collective Motion in the Nuclear Shell Model. Proc. R. Soc. A 245, 128; 562 (1958). [Google Scholar]
  2. K. Wildermuth, T. Kanellopoulos, The “cluster model” of the atomic nuclei. Nucl. Phys. 7, 150 (1958). [CrossRef] [Google Scholar]
  3. B.F. Bayman, A. Bohr, On the connection between the cluster model and the SU3 coupling scheme for particles in a harmonic oscillator potential. Nucl. Phys. 9, 596 (1958). [CrossRef] [Google Scholar]
  4. J. Cseh, Microscopic structure and mathematical background of the multiconfigurational dynamical symmetry. Phys. Rev. C 103, 064322 (2021). [CrossRef] [Google Scholar]
  5. T. Dytrych, K.D. Sviratcheva, J.P. Draayer, C. Bahri, J.P. Vary, Ab initio symplectic no-core shell model. J. Phys. G 35, 123101 (2008). [CrossRef] [Google Scholar]
  6. J. Cseh, Algebraic models for shell-like quarteting of nucleons. Phys. Lett. B 743, 213 (2015) [CrossRef] [Google Scholar]
  7. E.P. Wigner, On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei. Phys. Rev. 51, 106 (1937). [CrossRef] [Google Scholar]
  8. G. Rosensteel, D.J. Rowe, Nuclear Sp(3, R). Phys. Rev. Lett. 38, 10 (1980). [Google Scholar]
  9. D.J. Rowe, G. Rosensteel, Rotational bands in the u(3)-boson model. Phys. Rev. C 25, 3236 (1982). [CrossRef] [Google Scholar]
  10. O. Castanos, J-P Draayer, Contracted symplectic model with ds-shell applications. Nucl. Phys. A 491, 349 (1989). [CrossRef] [Google Scholar]
  11. J. Cseh, G. Riczu, J. Darai, Shape isomers of light nuclei from the stability and consistency of the SU(3) symmetry. Phys. Lett. B 795, 160 (2009). [Google Scholar]
  12. P. Rochford, D.J. Rowe, J. Repka, Dynamic structure and embedded representation in physics: The group theory of the adiabatic approximation. J. Math. Phys. 29, 572 (1988). [CrossRef] [Google Scholar]
  13. M. Jarrio, J.L. Wood, D.J. Rowe, The SU(3) structure of rotational states in heavy deformed nuclei. Nucl. Phys. A 528, 409 (1991). [CrossRef] [Google Scholar]
  14. F. Iachello, R.D. Levine, Algebraic approach to molecular rotation-vibration spectra. I. Diatomic molecules. J. Chem. Phys. 77, 3046 (1982). [CrossRef] [Google Scholar]
  15. J. Cseh, Semimicroscopic algebraic description of nuclear cluster states. Vibron model coupled to the SU(3) shell model. Phys. Lett. B 281, 173 (1992). [Google Scholar]
  16. J. Cseh, G. Lévai, G. Semimicroscopic Algebraic Cluster Model of Light Nuclei. I. Two-Cluster-Systems with Spin-Isospin-Free Interactions. Ann. Phys. 230, 165 (1994). [CrossRef] [Google Scholar]
  17. D.R. Tilley, et al., Energy levels of light nuclei, A = 20. Nucl. Phys. A 636, 249 (1998). [CrossRef] [Google Scholar]
  18. P. Kramer, M. Moshinsky, Group Theory of Harmonic Oscillators and Nuclear Structure (In Group Theory and Its Applications; Ed: Loebl, Academic Press: New York, NY, USA, 1968) p. 339. [Google Scholar]
  19. J. Cseh, On the logical structure of composite symmetries in atomic nuclei. Symmetry 15, 371 (2023). [CrossRef] [Google Scholar]
  20. J. Cseh, Multichannel dynamical symmetry and heavy ion resonances. Phys. Rev. C 50, 2240 (1994). [CrossRef] [PubMed] [Google Scholar]
  21. J. Cseh, K. Kato, Multichannel dynamical symmetry and cluster-coexistence. Phys. Rev. C 87, 067301 (2013). [CrossRef] [Google Scholar]
  22. J. Cseh, Spontantaneous symmetry-breaking in Elliott-type models and the nuclear deformation. Phys. Lett. B 793, 59 (2019). [CrossRef] [Google Scholar]
  23. J. Cseh, Dual breaking of symmetries in algebraic models. Eur. Phys. J. Special Topics 229, 2543 (2020). [CrossRef] [Google Scholar]
  24. J. Darai, J. Cseh, D.G. Jenkins, Shape isomers and clusterization in the 28Si nucleus. Phys. Rev. C. 86, 064309 (2012). [CrossRef] [Google Scholar]
  25. J. Cseh, J Darai, et.al., Elongated shape isomers in the 36Ar nucleus. Phys. Rev. C 80, 034320 (2009). [CrossRef] [Google Scholar]
  26. J. Darai, J. Cseh, N.V. Antonenko, et al, Clusterization in the shape isomers of the 56Ni nucleus. Phys. Rev. C 84, 024302 (2011). [CrossRef] [Google Scholar]
  27. P. Dang, G. Riczu, J. Cseh, Shape isomers of alphalike nuclei in terms of the multiconfigurational dynamical symmetry. Phys. Rev. C 107, 044315 (2023). [CrossRef] [Google Scholar]
  28. G. Leander, S.E. Larsson, Potential-energy surfaces for the doubly even N=Z nuclei. Nucl. Phys. A 239, 93 (1975). [CrossRef] [Google Scholar]
  29. A.C. Merchant, W.D.M. Rae, Systematics of alphachain states in 4N-nuclei. Nucl. Phys. A 549, 431 (1992). [CrossRef] [Google Scholar]
  30. J. Zhang, W.D.M. Rae, Systematics of 2-dimensional alpha-cluster configurations in 4N nuclei from 12C to 44Ti. Nucl. Phys. A 564, 252 (1993). [CrossRef] [Google Scholar]
  31. J. Zhang, W.D.M. Rae, A.C. Merchant, Systematics of some 3-dimensional alpha-cluster configurations in 4N nuclei from 16O to 44Ti. Nucl. Phys. A 575, 61 (1994). [CrossRef] [Google Scholar]
  32. J. Cseh, G. Riczu, Moment of inertia and dynamical symmetry. Symmetry 15, 2116 (2023). [CrossRef] [Google Scholar]
  33. W. D. M. Rae, A. C. Merchant, Hyperdeformed states in 36Ar and 48Cr in the cranked cluster model. Phys. Lett. B 279, 207 (1992). [CrossRef] [Google Scholar]
  34. J. Cseh, A. Algora, J. Darai, P. O. Hess, Deformation dependence of nuclear clusterization. Phys. Rev. C 70, 034311 (2004). [CrossRef] [Google Scholar]
  35. W. Sciani et al., Possible hyperdeformed band in 36Ar observed in 12C+24Mg elastic scattering. Phys. Rev. C 80, 034319 (2009). [CrossRef] [Google Scholar]
  36. G. Riczu, J. Cseh, Gross features of the spectrum of the 36Ar nucleus. Int. J. Mod. Phys. E 30, 2150034 (2021). [CrossRef] [Google Scholar]
  37. D.G. Jenkins, et al., Candidate superdeformed band in 28Si. Phys. Rev. C 86, 064308 (2012). [CrossRef] [Google Scholar]
  38. J. Cseh, G. Riczu, Quartet excitations and cluster spectra in light nuclei. Phys. Lett. B 757, 312 (2016). [CrossRef] [Google Scholar]
  39. P. Adsley, D.G. Jenkins, J. Cseh, et al., Alpha clustering in 28Si probed through the identification of highlying 0+ states. Phys. Rev. C 95, 024319 (2017). [CrossRef] [Google Scholar]
  40. L. Morris, et al., Search for in-band transitions in the candidate superdeformed band in 28Si Phys. Rev. C 104, 054323 (2021). [Google Scholar]
  41. Y. Taniguchi, Y. Kanada En’yo, M. Kimura, Cluster structures and superdeformation in 28Si. Phys. Rev. C 80, 044316 (2009). [CrossRef] [Google Scholar]
  42. G. Riczu, J. Darai, J. Cseh, Superdeformation and dynamical symmetry. Phys. Scr. 99, 045306 (2024). [CrossRef] [Google Scholar]
  43. P. Adsley, M. Heine, D. G. Jenkins, et al, Extending the Hoyle-state paradigm to 12C 12C fusion, Phys. Rev. Lett. 129, 102701 (2022). [CrossRef] [PubMed] [Google Scholar]
  44. J. Cseh, G. Riczu, D.G. Jenkins, J. Cseh, Cluster states and their potential contribution to carbon burning in massive stars. Phys. Rev. C 109, 044309 (2024). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.