Open Access
Issue |
EPJ Web Conf.
Volume 312, 2024
22nd Conference on Flavor Physics and CP Violation (FPCP 2024)
|
|
---|---|---|
Article Number | 02011 | |
Number of page(s) | 11 | |
Section | Neutrino Physics | |
DOI | https://doi.org/10.1051/epjconf/202431202011 | |
Published online | 20 November 2024 |
- E. Lisi, A. Marrone, D. Montanino, Probing possible decoherence effects in atmospheric neutrino oscillations, Phys. Rev. Lett. 85, 1166 (2000), hep-ph/0002053. 10.1103/PhysRevLett.85.1166 [CrossRef] [PubMed] [Google Scholar]
- G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Probing non-standard decoherence effects with solar and KamLAND neutrinos, Phys. Rev. D 76, 033006 (2007), 0704.2568. 10.1103/PhysRevD.76.033006 [CrossRef] [Google Scholar]
- G. Balieiro Gomes, M.M. Guzzo, P.C. de Holanda, R.L.N. Oliveira, Parameter Limits for Neutrino Oscillation with Decoherence in KamLAND, Phys. Rev. D 95, 113005 (2017), 1603.04126. 10.1103/PhysRevD.95.113005 [CrossRef] [Google Scholar]
- A.L.G. Gomes, R.A. Gomes, O.L.G. Peres, Quantum decoherence and relaxation in long-baseline neutrino data, JHEP 10, 035 (2023), 2001.09250. 10.1007/JHEP10(2023)035 [CrossRef] [Google Scholar]
- J.A.B. Coelho, W.A. Mann, S.S. Bashar, Nonmaximal ✓23 mixing at NOvA from neutrino decoherence, Phys. Rev. Lett. 118, 221801 (2017), 1702.04738. 10.1103/Phys-RevLett.118.221801 [CrossRef] [PubMed] [Google Scholar]
- P. Coloma, J. Lopez-Pavon, I. Martinez-Soler, H. Nunokawa, Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore, Eur. Phys. J. C 78, 614 (2018), 1803.04438. 10.1140/epjc/s10052-018-6092-6 [CrossRef] [Google Scholar]
- R. Abbasi et al. (IceCube), Searching for Decoherence from Quantum Gravity at the IceCube South Pole Neutrino Observatory, Nature Physics (2024), 2308.00105. 10.1038/s41567-024-02436-w [Google Scholar]
- V. De Romeri, C. Giunti, T. Stuttard, C.A. Ternes, Neutrino oscillation bounds on quan-tum decoherence, JHEP 09, 097 (2023), 2306.14699. 10.1007/JHEP09(2023)097 [CrossRef] [Google Scholar]
- J.A. Carpio, E. Massoni, A.M. Gago, Testing quantum decoherence at DUNE, Phys. Rev. D 100, 015035 (2019), 1811.07923. 10.1103/PhysRevD.100.015035 [CrossRef] [Google Scholar]
- G. Balieiro Gomes, D.V. Forero, M.M. Guzzo, P.C. De Holanda, R.L.N. Oliveira, Quantum Decoherence Effects in Neutrino Oscillations at DUNE, Phys. Rev. D 100, 055023 (2019), 1805.09818. 10.1103/PhysRevD.100.055023 [CrossRef] [Google Scholar]
- C. Bera, K.N. Deepthi, Study of quantum decoherence at Protvino to ORCA experiment, arXiv (2024), 2405.03286. https://doi.org/10.48550/arXiv.2405.03286 [Google Scholar]
- G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun. Math. Phys. 48, 119 (1976). 10.1007/BF01608499 [CrossRef] [Google Scholar]
- V. Gorini, A. Kossakowski, E.C.G. Sudarshan, Completely Positive Dynamical Semigroups of N Level Systems, J. Math. Phys. 17, 821 (1976). 10.1063/1.522979 [CrossRef] [Google Scholar]
- V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, E.C.G. Sudarshan, Properties of Quantum Markovian Master Equations, Rept. Math. Phys. 13, 149 (1978). 10.1016/0034-4877(78)90050-2 [CrossRef] [Google Scholar]
- T. Banks, L. Susskind, M.E. Peskin, Difficulties for the Evolution of Pure States Into Mixed States, Nucl. Phys. B 244, 125 (1984). 10.1016/0550-3213(84)90184-6 [CrossRef] [Google Scholar]
- F. Benatti, H. Narnhofer, ENTROPY BEHAVIOR UNDER COMPLETELY POSITIVE MAPS, Lett. Math. Phys. 15, 325 (1988). 10.1007/BF00419590 [CrossRef] [Google Scholar]
- Y. Farzan, T. Schwetz, A.Y. Smirnov, Reconciling results of LSND, MiniBooNE and other experiments with soft decoherence, JHEP 07, 067 (2008), 0805.2098. 10.1088/1126-6708/2008/07/067 [CrossRef] [Google Scholar]
- P.B. Denton, S.J. Parke, Addendum to “Compact perturbative expressions for neutrino oscillations in matter” (2018), [Addendum: JHEP 06, 109 (2018)], 1801.06514. 10.1007/JHEP06(2018)109 [Google Scholar]
- P. Huber, M. Lindner, W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167, 195 (2005), hep-ph/0407333. 10.1016/j.cpc.2005.01.003 [CrossRef] [Google Scholar]
- P. Huber, J. Kopp, M. Lindner, M. Rolinec, W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177, 432 (2007), hep-ph/0701187. 10.1016/j.cpc.2007.05.004 [CrossRef] [Google Scholar]
- A.V. Akindinov et al., Letter of Interest for a Neutrino Beam from Protvino to KM3NeT/ORCA, Eur. Phys. J. C 79, 758 (2019), 1902.06083. 10.1140/epjc/s10052-019-7259-5 [CrossRef] [Google Scholar]
- S. Adrian-Martinez et al. (KM3Net), Letter of intent for KM3NeT 2.0, J. Phys. G 43, 084001 (2016), 1601.07459. 10.1088/0954-3899/43/8/084001 [Google Scholar]
- I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09, 178 (2020), 2007.14792. 10.1007/JHEP09(2020)178 [CrossRef] [Google Scholar]
- G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Getting the most from the statistical analysis of solar neutrino oscillations, Phys. Rev. D 66, 053010 (2002), hep-ph/0206162. 10.1103/PhysRevD.66.053010 [CrossRef] [Google Scholar]
- P. Huber, M. Lindner, W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645, 3 (2002), hep-ph/0204352. 10.1016/S0550-3213(02)00825-8 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.