Open Access
Issue
EPJ Web Conf.
Volume 312, 2024
22nd Conference on Flavor Physics and CP Violation (FPCP 2024)
Article Number 03001
Number of page(s) 9
Section Kaon Physics
DOI https://doi.org/10.1051/epjconf/202431203001
Published online 20 November 2024
  1. G. Buchalla, A.J. Buras, M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68, 1125 (1996), hep-ph/9512380. 10.1103/RevModPhys.68.1125 [CrossRef] [Google Scholar]
  2. A. Buras, Gauge Theory of Weak Decays (Cambridge University Press, 2020), ISBN 978-1-139-52410-0, 978-1-107-03403-7 [CrossRef] [Google Scholar]
  3. F. Mescia, C. Smith, Improved estimates of rare K decay matrix-elements from Kl3 decays, Phys. Rev. D 76, 034017 (2007), 0705.2025. 10.1103/PhysRevD.76.034017 [CrossRef] [Google Scholar]
  4. G. Buchalla, A.J. Buras, K —> pi neutrino anti-neutrino and high precision determinations of the CKM matrix, Phys. Rev. D 54, 6782 (1996), hep-ph/9607447. 10.1103/PhysRevD.54.6782 [CrossRef] [PubMed] [Google Scholar]
  5. J. Brod, M. Gorbahn, E. Stamou, Updated Standard Model Prediction for Kπνν¯ and ϵK, PoS BEAUTY2020, 056 (2021), 2105.02868. 10.22323/1.391.0056 [Google Scholar]
  6. G. Anzivino et al., Workshop summary: Kaons@CERN 2023, Eur. Phys. J. C 84, 377 (2024), 2311.02923. 10.1140/epjc/s10052-024-12565-4 [CrossRef] [Google Scholar]
  7. J.K. Ahn et al. (KOTO), Search for the KLπ0νν¯ and KLπ0X0 decays at the J-PARC KOTO experiment, Phys. Rev. Lett. 122, 021802 (2019), 1810.09655. 10.1103/Phys-RevLett.122.021802 [CrossRef] [PubMed] [Google Scholar]
  8. H. Nanjo, for the KOTO collaboration, Koto ii at j-parc : toward measurement of the branching ratio of KLπ0νν¯, Journal of Physics: Conference Series 2446, 012037 (2023). 10.1088/1742-6596/2446/1/012037 [CrossRef] [Google Scholar]
  9. A.J. Buras, M. Gorbahn, U. Haisch, U. Nierste, Charm quark contribution to K+ —> pi+ nu anti-nu at next-to-next-to-leading order, JHEP 11, 002 (2006), [Erratum: JHEP 11, 167 (2012)], hep-ph/0603079. 10.1007/JHEP11(2012)167 [CrossRef] [Google Scholar]
  10. J. Brod, M. Gorbahn, Electroweak Corrections to the Charm Quark Contribution to K+ —> pi+ nu anti-nu, Phys. Rev. D 78, 034006 (2008), 0805.4119. 10.1103/Phys-RevD.78.034006 [CrossRef] [Google Scholar]
  11. G. Isidori, F. Mescia, C. Smith, Light-quark loops in K —> pi nu anti-nu, Nucl. Phys. B 718, 319 (2005), hep-ph/0503107. 10.1016/j.nuclphysb.2005.04.008 [CrossRef] [Google Scholar]
  12. Z. Bai, N.H. Christ, X. Feng, A. Lawson, A. Portelli, C.T. Sachrajda, K+π+νν¯ decay amplitude from lattice QCD, Phys. Rev. D 98, 074509 (2018), 1806.11520. 10.1103/PhysRevD.98.074509 [CrossRef] [Google Scholar]
  13. E. Cortina Gil et al. (NA62), Measurement of the very rare K+π+νν¯ decay, JHEP 06, 093 (2021), 2103.15389. 10.1007/JHEP06(2021)093 [Google Scholar]
  14. C. NA62 (NA62), Tech. rep., CERN, Geneva (2023), https://cds.cern.ch/record/2856997 [Google Scholar]
  15. R.L. Workman (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022). [Google Scholar]
  16. J. Brod, M. Gorbahn, E. Stamou, Standard-Model Prediction of ϵK with Manifest Quark-Mixing Unitarity, Phys. Rev. Lett. 125, 171803 (2020), 1911.06822. 10.1103/PhysRevLett.125.171803 [CrossRef] [PubMed] [Google Scholar]
  17. J. Brod, S. Kvedaraite˙, Z. Polonsky, Two-loop electroweak corrections to the Top-Quark Contribution to ϵK, JHEP 12, 198 (2021), 2108.00017. 10.1007/JHEP12(2021)198 [CrossRef] [Google Scholar]
  18. J. Brod, S. Kvedaraite, Z. Polonsky, A. Youssef, Electroweak corrections to the Charm-Top-Quark Contribution to ϵK, JHEP 12, 014 (2022), 2207.07669. 10.1007/JHEP12(2022)014 [CrossRef] [Google Scholar]
  19. Y. Aoki et al. (Flavour Lattice Averaging Group (FLAG)), FLAG Review 2021, Eur. Phys. J. C 82, 869 (2022), 2111.09849. 10.1140/epjc/s10052-022-10536-1 [CrossRef] [Google Scholar]
  20. M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, L. Silvestrini, C. Tarantino, Power corrections to the CP-violation parameter εK, JHEP 02, 181 (2022), 2111.05153. 10.1007/JHEP02(2022)181 [CrossRef] [Google Scholar]
  21. G. D’Ambrosio, T. Kitahara, Direct CP Violation in Kµ+µ, Phys. Rev. Lett. 119, 201802 (2017), 1707.06999. 10.1103/PhysRevLett.119.201802 [CrossRef] [PubMed] [Google Scholar]
  22. A. Dery, M. Ghosh, Y. Grossman, S. Schacht, K → µ+µ as a clean probe of shortdistance physics, JHEP 07, 103 (2021), 2104.06427. 10.1007/JHEP07(2021)103 [CrossRef] [Google Scholar]
  23. J. Brod, E. Stamou, Impact of indirect CP violation on Br(KSµ+µ)=0, JHEP 05, 155 (2023), 2209.07445. 10.1007/JHEP05(2023)155 [CrossRef] [Google Scholar]
  24. N.H. Christ, X. Feng, A. Portelli, C.T. Sachrajda (RBC, UKQCD), Prospects for a lattice computation of rare kaon decay amplitudes: Kπℓ+ decays, Phys. Rev. D 92, 094512 (2015), 1507.03094. 10.1103/PhysRevD.92.094512 [CrossRef] [Google Scholar]
  25. N.H. Christ, X. Feng, A. Juttner, A. Lawson, A. Portelli, C.T. Sachrajda, First exploratory calculation of the long-distance contributions to the rare kaon decays Kπℓ+, Phys. Rev. D 94, 114516 (2016), 1608.07585. 10.1103/PhysRevD.94.114516 [CrossRef] [Google Scholar]
  26. P.A. Boyle, F. Erben, J.M. Flynn, V. Gülpers, R.C. Hill, R. Hodgson, A. Jüttner, F.O. hÓgáin, A. Portelli, C.T. Sachrajda (RBC, UKQCD), Simulating rare kaon decays K+→π++- using domain wall lattice QCD with physical light quark masses, Phys. Rev. D 107, L011503 (2023), 2202.08795. 10.1103/PhysRevD.107.L011503 [CrossRef] [Google Scholar]
  27. R. Appel et al. (E865), A New measurement of the properties of the rare decay K+ —> pi+ e+ e-, Phys. Rev. Lett. 83, 4482 (1999), hep-ex/9907045. 10.1103/Phys-RevLett.83.4482 [CrossRef] [Google Scholar]
  28. E. Cortina Gil et al. (NA62), A measurement of the K+π+µ+µ decay, JHEP 11, 011 (2022), [Addendum: JHEP 06, 040 (2023)], 2209.05076. 10.1007/JHEP11(2022)011 [Google Scholar]
  29. G. D’Ambrosio, F. Mahmoudi, S. Neshatpour, Beyond the Standard Model prospects for kaon physics at future experiments, JHEP 02, 166 (2024), 2311.04878. 10.1007/JHEP02(2024)166 [CrossRef] [Google Scholar]
  30. J.R. Batley et al. (NA48/1), Observation of the rare decay K(S) —> pi0 mu+ mu-, Phys. Lett. B 599, 197 (2004), hep-ex/0409011. 10.1016/j.physletb.2004.08.058 [CrossRef] [Google Scholar]
  31. V.G. Chobanova, X. Cid Vidal, J.P. Dalseno, M. Lucio Martinez, D. Martinez Santos, V. Renaudin, Tech. rep., CERN, Geneva (2016), http://cds.cern.ch/record/2195218 [Google Scholar]
  32. M. Gorbahn, U. Moldanazarova, K.H. Sieja, E. Stamou, M. Tabet, The anatomy of K+π+νν¯ distributions, Eur. Phys. J. C 84, 680 (2024), 2312.06494. 10.1140/epjc/s10052-024-13027-7 [CrossRef] [Google Scholar]
  33. E. Goudzovski et al., New physics searches at kaon and hyperon factories, Rept. Prog. Phys. 86, 016201 (2023), 2201.07805. 10.1088/1361-6633/ac9cee [CrossRef] [Google Scholar]
  34. J. Beacham et al., Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report, J. Phys. G 47, 010501 (2020), 1901.09966. 10.1088/1361-6471/ab4cd2 [CrossRef] [Google Scholar]
  35. Y. Grossman, Y. Nir, K(L) —> pi0 neutrino anti-neutrino beyond the standard model, Phys. Lett. B 398, 163 (1997), hep-ph/9701313. 10.1016/S0370-2693(97)00210-4 [CrossRef] [Google Scholar]
  36. E. Cortina Gil et al. (NA62), Search for π0 decays to invisible particles, JHEP 02, 201 (2021), 2010.07644. 10.1007/JHEP02(2021)201 [CrossRef] [Google Scholar]
  37. J.R. Batley et al. (NA48/2), Search for the dark photon in π0 decays, Phys. Lett. B 746, 178 (2015), 1504.00607. 10.1016/j.physletb.2015.04.068 [CrossRef] [Google Scholar]
  38. E. Cortina Gil et al. (NA62), Search for production of an invisible dark photon in π0 decays, JHEP 05, 182 (2019), 1903.08767. 10.1007/JHEP05(2019)182 [Google Scholar]
  39. E. Cortina Gil et al. (NA62), Search for K+ decays to a muon and invisible particles, Phys. Lett. B 816, 136259 (2021), 2101.12304. 10.1016/j.physletb.2021.136259 [CrossRef] [Google Scholar]
  40. X.G. He, X.D. Ma, J. Tandean, G. Valencia, Evading the Grossman-Nir bound with ΔI = 3/2 new physics, JHEP 08, 034 (2020), 2005.02942. 10.1007/JHEP08(2020)034 [Google Scholar]
  41. S. Gori, G. Perez, K. Tobioka, KOTO vs. NA62 Dark Scalar Searches, JHEP 08, 110 (2020), 2005.05170. 10.1007/JHEP08(2020)110 [CrossRef] [Google Scholar]
  42. M. Hostert, K. Kaneta, M. Pospelov, Pair production of dark particles in meson decays, Phys. Rev. D 102, 055016 (2020), 2005.07102. 10.1103/PhysRevD.102.055016 [CrossRef] [Google Scholar]
  43. M. Fabbrichesi, E. Gabrielli, Dark-sector physics in the search for the rare decays K+π+νν¯ and KLπ0νν¯, Eur. Phys. J. C 80, 532 (2020), 1911.03755. 10.1140/epjc/s10052-020-8103-7 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.