Open Access
Issue
EPJ Web Conf.
Volume 314, 2024
QCD@Work 2024 - International Workshop on Quantum Chromodynamics - Theory and Experiment
Article Number 00015
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202431400015
Published online 10 December 2024
  1. F. Jegerlehner, The Anomalous Magnetic Moment of the Muon (Springer Tracts Mod. Phys. 274, Cham, Switzerland, 2017) pag. 1–693 [Google Scholar]
  2. D. P. Aguillard, et al., Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm, Phys. Rev. Lett. 131 (16) (2023) 161802. https://doi.org/10.1103/PhysRevLett.131.161802 [CrossRef] [PubMed] [Google Scholar]
  3. G. W. Bennett, et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003. https://doi.org/10.1103/PhysRevD.73.072003 [CrossRef] [Google Scholar]
  4. B. Abi, et al., Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (14) (2021) 141801. https://doi.org/10.1103/PhysRevLett.126.14180 [CrossRef] [PubMed] [Google Scholar]
  5. T. Aoyama, et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1–166. https://doi.Org/10.1016/j.physrep.2020.07.006 [CrossRef] [Google Scholar]
  6. A. Keshavarzi, D. Nomura, T. Teubner, g-2 of charged leptons, a(mZ), and the hyperfine splitting of muonium, Phys. Rev. D101 (1) (2020) 014029. http://arxiv.org/abs/1911.00367 [Google Scholar]
  7. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to a(mZ), Eur. Phys. J. C80 (3) (2020) 241, [Erratum: Eur. Phys. J. C80, 410 (2020)]. http://arxiv.org/abs/1908.00921 [CrossRef] [Google Scholar]
  8. M. Benayoun, L. Delbuono, F. Jegerlehner, BHLS2, a New Breaking of the HLS Model and its Phenomenology, Eur. Phys. J. C80 (2) (2020) 81, [Erratum: Eur. Phys. J. C80, 244 (2020)]. http://arxiv.org/abs/1903.11034 [CrossRef] [Google Scholar]
  9. F. V. Ignatov, et al., Measurement of the e + e- n+n- cross section from threshold to 1.2 GeV with the CMD-3 detector, Phys. Rev. D109 (2024) 112002. https://doi.org/10.1103/PhysRevD.109.112002 [Google Scholar]
  10. F. V. Ignatov, et al., Measurement of the pion formfactor with CMD-3 detector and its implication to the hadronic contribution to muon (g - 2), Phys. Rev. Lett. 132 (2024) 231903. https://doi.org/10.1103/PhysRevLett.132.231903 [CrossRef] [PubMed] [Google Scholar]
  11. J. P. Lees, et al., Precise Measurement of the e + e- n+n-(Y) Cross Section with the Initial-State Radiation Method at BABAR, Phys. Rev. D86 (2012) 032013. https://doi.org/10.1103/PhysRevD.86.032013 [Google Scholar]
  12. M. Ablikim, et al., Measurement of the e + e- n+n~ cross section between 600 and 900 MeV using initial state radiation, Phys. Lett. B753 (2016) 629–638, [Erratum: Phys. Lett. B812, 135982 (2021)]. https://doi.org/10.1016/j.physletb.2015.11.043 [CrossRef] [Google Scholar]
  13. A. Anastasi, et al., Combination of KLOE a{ee + e- n+n-Y(Y)) measurements and determination of an+n in the energy range 0.10 < 5 < 0.95 GeV2, JHEP 03 (2018) 173. https://doi.org/10.1007/JHEP03(2018)173 [Google Scholar]
  14. S. Borsanyi, et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (7857) (2021) 51–55. https://doi.org/10.1038/s41586-021-03418-1 [CrossRef] [PubMed] [Google Scholar]
  15. S. Boccaletti, et al., High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly, https://arxiv.org/pdf/2407.10913 [Google Scholar]
  16. C. M. Carloni Calame, M. Passera, L. Trentadue, G. Venanzoni, A new approach to evaluate the leading hadronic corrections to the muon g-2, Phys. Lett. B746 (2015) 325–329. https://doi.org/10.1016/j.physletb.2015.05.020 [CrossRef] [Google Scholar]
  17. B. Lautrup, A. Peterman, E. de Rafael, Recent developments in the comparison between theory and experiments in quantum electrodynamics, Phys. Rept. 3 (1972) 193–260. https://doi.org/10.1016/0370-1573(72)90011-7 [CrossRef] [Google Scholar]
  18. E. Balzani, et al., Hadronic vacuum polarization contributions to the muon g - 2 in the space-like region, Phys. Lett. B834 (2022) 137462. https://doi.org/10.1016/j.physletb.2022.137462 [CrossRef] [Google Scholar]
  19. A.V. Nesterenko, Timelike and spacelike kernel functions for the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, J. Phys. G 49 (2022) 055001, https://doi.org/10.1088/1361-6471/ac5d0a; J. Phys. G 50 (2022) 029401, https://doi.org/10.1088/1361-6471/aca3c1 [CrossRef] [Google Scholar]
  20. G. Abbiendi, et al., Measuring the leading hadronic contribution to the muon g - 2 via e scattering, Eur. Phys. J. C77 (3) (2017) 139. https://doi.org/10.1140/epjc/s10052-017-4633-z [CrossRef] [Google Scholar]
  21. G. Abbiendi, et al., Letter of Intent: the MUonE project, Tech. Rep. CERN-SPSC-2019-026 (2019). https://cds.cern.ch/record/2677471 [Google Scholar]
  22. G. Abbiendi, Status of the MUonE experiment, Phys. Scripta 97 (5) (2022) 054007. https://doi.org/10.1088/1402-4896/ac6297 [CrossRef] [Google Scholar]
  23. D. Greynat and E. de Rafael, Hadronic vacuum polarization and the MUonE proposal, JHEP 05 (2022) 084. https://doi.org/10.1007/JHEP05(2022)084 [CrossRef] [Google Scholar]
  24. F. Ignatov, R.N. Pilato, T. Teubner and G. Venanzoni, An alternative evaluation of the leading-order hadronic contribution to the muon g - 2 with MUonE, Phys. Lett. B848 (2024) 138344. https://doi.org/10.1016/j.physletb.2023.138344 [CrossRef] [Google Scholar]
  25. D. Boito, C.Y. London, P. Masjuan and C. Rojas, Model-independent extrapolation of MUonE data with Padé and D-Log approximants, Phys. Rev. D110 (2024) 074012. https://doi.org/10.1103/PhysRevD.110.074012 [Google Scholar]
  26. P. Banerjee, et al., Theory for muon-electron scattering @ 10 ppm: A report of the MUonE theory initiative, Eur. Phys. J. C 80 (6) (2020) 591. https://doi.org/10.1140/epjc/s10052-020-8138-9 [CrossRef] [Google Scholar]
  27. C. M. Carloni Calame, M. Chiesa, S. M. Hasan, G. Montagna, O. Nicrosini, F. Piccinini, Towards muon-electron scattering at NNLO, JHEP 11 (2020) 028. https://doi.org/10.1007/JHEP11(2020)028 [CrossRef] [Google Scholar]
  28. E. Budassi, C. M. C. Calame, M. Chiesa, C. L. Del Pio, S. M. Hasan, G. Montagna, O. Nicrosini, F. Piccinini, NNLO virtual and real leptonic corrections to muon-electron scattering, JHEP 11 (2021). https://doi.org/10.1007/JHEP11(2021)098 [Google Scholar]
  29. A. Broggio, et al., Muon-electron scattering at NNLO, JHEP 01 (2023) 112. https://doi.org/10.1007/JHEP01(2023)112 [CrossRef] [Google Scholar]
  30. P. Mastrolia, M. Passera, A. Primo, U. Schubert, Master integrals for the NNLO virtual corrections to e scattering in QED: the planar graphs, JHEP 11 (2017) 198. https://doi.org/10.1007/JHEP11(2017)198 [CrossRef] [Google Scholar]
  31. S. Di Vita, S. Laporta, P. Mastrolia, A. Primo, U. Schubert, Master integrals for the NNLO virtual corrections to e scattering in QED: the non-planar graphs, JHEP 09 (2018) 016. https://doi.org/10.1007/JHEP09(2018)016 [CrossRef] [Google Scholar]
  32. R. Bonciani, et al., Two-Loop Four-Fermion Scattering Amplitude in QED, Phys. Rev. Lett. 128 (2) (2022) 022002. https://doi.org/10.1103/PhysRevLett.128.022002 [CrossRef] [PubMed] [Google Scholar]
  33. T. Ahmed, et al., Two-loop vertices with vacuum polarization insertion, JHEP 01 (2024) 010. https://doi.org/10.1007/JHEP01(2024)010 [CrossRef] [Google Scholar]
  34. M. Fael, Hadronic corrections to-e scattering at NNLO with space-like data, JHEP 02 (2019) 027. https://doi.org/10.1007/JHEP02(2019)027 [CrossRef] [Google Scholar]
  35. M. Fael, M. Passera, Muon-Electron Scattering at Next-To-Next-To-Leading Order: The Hadronic Corrections, Phys. Rev. Lett. 122 (19) (2019) 192001. https://doi.org/10.1103/PhysRevLett.122.192001 [CrossRef] [PubMed] [Google Scholar]
  36. M. Alacevich, C. M. Carloni Calame, M. Chiesa, G. Montagna, O. Nicrosini, F. Piccinini, Muon-electron scattering at NLO, JHEP 02 (2019) 155. https://doi.org/10.1007/JHEP02(2019)155 [CrossRef] [Google Scholar]
  37. P. Banerjee, T. Engel, A. Signer, Y. Ulrich, QED at NNLO with McMule, SciPost Phys. 9 (2020) 027. https://doi.org/10.21468/SciPostPhys.9.2.027 [CrossRef] [Google Scholar]
  38. M. Fael, et al., Massive Vector Form Factors to Three Loops, Phys. Rev. Lett. 128 (17) (2022) 172003. https://doi.org/10.1103/PhysRevLett.128.172003 [CrossRef] [PubMed] [Google Scholar]
  39. S. Badger, J. Krys, R. Moodie, S. Zoia, Lepton-pair scattering with an off-shell and an on-shell photon at two loops in massless QED, JHEP 11 (2023) 041. https://doi.org/10.1007/JHEP11(2023)041 [CrossRef] [Google Scholar]
  40. T. Engel, The LBK theorem to all orders, JHEP 07 (2023) 177. https://doi.org/10.1007/JHEP07(2023)177 [CrossRef] [Google Scholar]
  41. T. Engel, Multiple soft-photon emission at next-to-leading power to all orders JHEP 03 (2024) 004. https://doi.org/10.1007/JHEP03(2024)004 [Google Scholar]
  42. E. Budassi, C. M. Carloni Calame, C. L. Del Pio, F. Piccinini, Single n0 production in^e scattering at MUonE, Phys. Lett. B829 (2022) 137138. https://doi.org/10.1016/j.physletb.2022.137138 [CrossRef] [Google Scholar]
  43. S. Agostinelli, et al., GEANT4-a simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8 [CrossRef] [Google Scholar]
  44. G. Abbiendi, et al., Lepton pair production in muon-nucleus scattering, Phys. Lett. B854 (2024) 138720. https://doi.org/10.1016/j.physletb.2024.138720 [CrossRef] [Google Scholar]
  45. A. Masiero, et al., New physics at the MUonE experiment at CERN, Phys. Rev. D102 (7) (2020) 075013. https://doi.org/10.1103/PhysRevD.102.075013 [Google Scholar]
  46. P. S. B. Dev, W. Rodejohann, X.-J. Xu, Y. Zhang, MUonE sensitivity to new physics explanations of the muon anomalous magnetic moment, JHEP 05 (2020) 053. https://doi.org/10.1007/JHEP05(2020)053 [CrossRef] [Google Scholar]
  47. O. Atkinson, M. Black, C. Englert, A. Lenz, A. Rusov, MUonE, muon g - 2 and electroweak precision constraints within 2HDMs, Phys. Rev. D106 (11) (2022) 115031. https://doi.org/10.1103/PhysRevD.106.115031 [Google Scholar]
  48. D. N. Le, V. D. Le, D. T. Le, V. C. Le, Unparticle effects at the MUonE experiment, Eur. Phys. J. C83 (11) (2023) 1037. https://doi.org/10.1140/epjc/s10052-023-12213-3 [Google Scholar]
  49. K. Asai, K. Hamaguchi, N. Nagata, S.-Y. Tseng, J. Wada, Probing the L-Lt gauge boson at the MUonE experiment, Phys. Rev. D106 (5) (2022) L051702. https://doi.org/10.1103/PhysRevD.106.L051702 [Google Scholar]
  50. I. Galon, D. Shih, I. R. Wang, Dark photons and displaced vertices at the MUonE experiment, Phys. Rev. D107 (9) (2023) 095003. https://doi.org/10.1103/PhysRevD.107.095003 [Google Scholar]
  51. G. Grilli di Cortona, E. Nardi, Probing light mediators at the MUonE experiment, Phys. Rev. D105 (11) (2022) L111701. https://doi.org/10.1103/PhysRevD.105.L111701 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.