Open Access
Issue
EPJ Web Conf.
Volume 315, 2024
International Workshop on Future Linear Colliders (LCWS2024)
Article Number 01025
Number of page(s) 11
Section Physics
DOI https://doi.org/10.1051/epjconf/202431501025
Published online 18 December 2024
  1. Tania Robens. A Short Overview on Low Mass Scalars at Future Lepton Colliders. Universe, 8:286, 2022, 2205.09687. [CrossRef] [Google Scholar]
  2. Tania Natalie Robens. An overview on low mass scalars at future lepton colliders. PoS, ICHEP2022:1041, 11 2022, 2211.10231. [Google Scholar]
  3. Richard Keith Ellis et al. Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020. 10 2019, 1910.11775. [Google Scholar]
  4. 2020 Update of the European Strategy for Particle Physics (Brochure). Technical report, Geneva, 2020. [Google Scholar]
  5. G. Abbiendi et al. Decay mode independent searches for new scalar bosons with the OPAL detector at LEP. Eur. Phys. J. C, 27:311–329, 2003, hep-ex/0206022. [CrossRef] [Google Scholar]
  6. S. Schael et al. Search for neutral MSSM Higgs bosons at LEP. Eur. Phys. J. C, 47:547– 587, 2006, hep-ex/0602042. [Google Scholar]
  7. H. Abramowicz et al. Higgs physics at the CLIC electron–positron linear collider. Eur. Phys. J. C, 77(7):475, 2017, 1608.07538. [CrossRef] [PubMed] [Google Scholar]
  8. Johan Alwall, Michel Herquet, Fabio Maltoni, Olivier Mattelaer, and Tim Stelzer. Mad-Graph 5 : Going Beyond. JHEP, 06:128, 2011, 1106.0522. [CrossRef] [Google Scholar]
  9. P. Drechsel, G. Moortgat-Pick, and G. Weiglein. Prospects for direct searches for light Higgs bosons at the ILC with 250 GeV. Eur. Phys. J. C, 80(10):922, 2020, 1801.09662. [CrossRef] [Google Scholar]
  10. Yan Wang, Mikael Berggren, and Jenny List. ILD Benchmark: Search for Extra Scalars Produced in Association with a Z boson at √s = 500 GeV. 5 2020, 2005.06265. [Google Scholar]
  11. R. Barate et al. Search for the standard model Higgs boson at LEP. Phys. Lett. B, 565:61–75, 2003, hep-ex/0306033. [CrossRef] [Google Scholar]
  12. Albert M Sirunyan et al. Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at √s = 8 and 13 TeV. Phys. Lett. B, 793:320–347, 2019, 1811.08459. [CrossRef] [Google Scholar]
  13. S. Heinemeyer, C. Li, F. Lika, G. Moortgat-Pick, and S. Paasch. Phenomenology of a 96 GeV Higgs boson in the 2HDM with an additional singlet. Phys. Rev. D, 106(7):075003, 2022, 2112.11958. [CrossRef] [Google Scholar]
  14. Thomas Biekötter, Sven Heinemeyer, and Georg Weiglein. Mounting evidence for a 95 GeV Higgs boson. JHEP, 08:201, 2022, 2203.13180. [CrossRef] [Google Scholar]
  15. Thomas Biekötter, Sven Heinemeyer, and Georg Weiglein. Excesses in the low-mass Higgs-boson search and the W-boson mass measurement. Eur. Phys. J. C, 83(5):450, 2023, 2204.05975. [CrossRef] [Google Scholar]
  16. Rachid Benbrik, Mohammed Boukidi, Stefano Moretti, and Souad Semlali. Explaining the 96 GeV Di-photon anomaly in a generic 2HDM Type-III. Phys. Lett. B, 832:137245, 2022, 2204.07470. [CrossRef] [Google Scholar]
  17. Rachid Benbrik, Mohammed Boukidi, and Bouzid Manaut. W-mass and 96 GeV excess in type-III 2HDM. 4 2022, 2204.11755. [Google Scholar]
  18. Weichao Li, Jingya Zhu, Kun Wang, Shiquan Ma, Pengfu Tian, and Haoxue Qiao. A light Higgs boson in the NMSSM confronted with the CMS di-photon and di-tau excesses. 12 2022, 2212.11739. [Google Scholar]
  19. Duarte Azevedo, Thomas Biekötter, and P. M. Ferreira. 2HDM interpretations of the CMS diphoton excess at 95 GeV. 5 2023, 2305.19716. [Google Scholar]
  20. Pablo Escribano, Victor Martin Lozano, and Avelino Vicente. A Scotogenic explanation for the 95 GeV excesses. 6 2023, 2306.03735. [Google Scholar]
  21. T. Biekötter, S. Heinemeyer, and G. Weiglein. The 95.4 GeV di-photon excess at ATLAS and CMS. 6 2023, 2306.03889. [Google Scholar]
  22. Alexander Belyaev, Rachid Benbrik, Mohammed Boukidi, Manimala Chakraborti, Stefano Moretti, and Souad Semlali. Explanation of the Hints for a 95 GeV Higgs Boson within a 2-Higgs Doublet Model. 6 2023, 2306.09029. [Google Scholar]
  23. Saiyad Ashanujjaman, Sumit Banik, Guglielmo Coloretti, Andreas Crivellin, Bruce Mellado, and Anza-Tshilidzi Mulaudzi. S U(2)L triplet scalar as the origin of the 95 GeV excess? 6 2023, 2306.15722. [Google Scholar]
  24. Zhen Liu, Lian-Tao Wang, and Hao Zhang. Exotic decays of the 125 GeV Higgs boson at future e+e lepton colliders. Chin. Phys. C, 41(6):063102, 2017, 1612.09284. [CrossRef] [Google Scholar]
  25. Jonathan Kozaczuk, Michael J. Ramsey-Musolf, and Jessie Shelton. Exotic Higgs boson decays and the electroweak phase transition. Phys. Rev. D, 101(11):115035, 2020, 1911.10210. [CrossRef] [Google Scholar]
  26. Zhen Wang, Xuliang Zhu, Elham E. Khoda, Shih-Chieh Hsu, Nikolaos Konstantinidis, Ke Li, Shu Li, Michael J. Ramsey-Musolf, Yanda Wu, and Yuwen E. Zhang. Study of Electroweak Phase Transition in Exotic Higgs Decays at the CEPC. In Snowmass 2021, 3 2022, 2203.10184. [Google Scholar]
  27. Maria Cepeda, Stefania Gori, Verena Martinez Outschoorn, and Jessie Shelton. Exotic Higgs Decays. 11 2021, 2111.12751. [Google Scholar]
  28. Tania Robens. Constraining Extended Scalar Sectors at Current and Future Colliders—An Update. Springer Proc. Phys., 292:141–152, 2023, 2209.15544. [CrossRef] [Google Scholar]
  29. Marcela Carena, Jonathan Kozaczuk, Zhen Liu, Tong Ou, Michael J. Ramsey-Musolf, Jessie Shelton, Yikun Wang, and Ke-Pan Xie. Probing the Electroweak Phase Transition with Exotic Higgs Decays. LHEP, 2023:432, 2023, 2203.08206. [Google Scholar]
  30. Tania Robens, Tim Stefaniak, and Jonas Wittbrodt. Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios. Eur. Phys. J. C, 80(2):151, 2020, 1908.08554. [CrossRef] [Google Scholar]
  31. Tania Robens. Two-Real-Singlet-Model Benchmark Planes. Symmetry, 15(1):27, 2023, 2209.10996. [Google Scholar]
  32. Tania Robens. Two-Real-Singlet Model Benchmark Planes – A Moriond Update. In 57th Rencontres de Moriond on QCD and High Energy Interactions, 5 2023, 2305.08595. [Google Scholar]
  33. Antonio Pich and Paula Tuzon. Yukawa Alignment in the Two-Higgs-Doublet Model. Phys. Rev. D, 80:091702, 2009, 0908.1554. [CrossRef] [Google Scholar]
  34. Antonio Pich. Flavour constraints on multi-Higgs-doublet models: Yukawa alignment. Nucl. Phys. B Proc. Suppl., 209:182–187, 2010, 1010.5217. [CrossRef] [Google Scholar]
  35. Combined measurements of Higgs boson production and decay using up to 139 fb−1 of proton-proton collision data at √s = 13 TeV collected with the ATLAS experiment. Technical report, CERN, Geneva, Nov 2021. ATLAS-CONF-2021-053. [Google Scholar]
  36. Otto Eberhardt, Ana Peñuelas Martínez, and Antonio Pich. Global fits in the Aligned Two-Higgs-Doublet model. JHEP, 05:005, 2021, 2012.09200. [CrossRef] [Google Scholar]
  37. Hamza Abouabid, Abdesslam Arhrib, Duarte Azevedo, Jaouad El Falaki, Pedro. M. Ferreira, Margarete Mühlleitner, and Rui Santos. Benchmarking di-Higgs production in various extended Higgs sector models. JHEP, 09:011, 2022, 2112.12515. [CrossRef] [Google Scholar]
  38. Carlos Henrique de Lima and Heather E. Logan. Unavoidable Higgs coupling deviations in the Z2-symmetric Georgi-Machacek model. Phys. Rev. D, 106(11):115020, 2022, 2209.08393. [CrossRef] [Google Scholar]
  39. A. Kunčinas, O. M. Ogreid, P. Osland, and M. N. Rebelo. Complex S3-symmetric 3HDM. JHEP, 07:013, 2023, 2302.07210. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.