Open Access
Issue
EPJ Web Conf.
Volume 317, 2025
6th International ATALANTE Conference on Nuclear Chemistry for Sustainable Fuel Cycles (ATALANTE-2024)
Article Number 01002
Number of page(s) 9
DOI https://doi.org/10.1051/epjconf/202531701002
Published online 31 January 2025
  1. Status of molten salt reactor technology. Technical Report Series No. 489, IAEA (2023). [Google Scholar]
  2. Advances in Small Modular Reactor Technology Developments: A supplement to IAEA advanced reactors information system (ARIS) 2022 edition. IAEA (2022) (http://aris.iaea.org). [Google Scholar]
  3. R. Roper, M. Harkema, P. Sabharwall, C. Riddle, B. Chisholm, B. Day P. Marotta, Ann. Nucl. Energy. 169, 108924 (2022). [CrossRef] [Google Scholar]
  4. R.G. Lewin, M.T. Harrison, International developments in electrorefining technologies for pyrochemical processing of spent nuclear fuels, in Reprocessing and recycling of spent nuclear fuel Ed: Robin Taylor, Woodhead Publishing Series in Energy, 373–413, ISBN 9781782422129, (2015). [CrossRef] [Google Scholar]
  5. P. Soucek, K. Uruga, T. Murakami, A. Rodrigues, S. Van Winckel, M. Iizuka, J-P. Glatz, J. Nucl. Mater. 526 (2019). [Google Scholar]
  6. A.F. Holdsworth, H. Eccles, C.A. Sharrad, K. George, Spent Nuclear Fuel—Waste or Resource? The Potential of Strategic Materials Recovery during Recycle for Sustainability and Advanced Waste Management. Waste, 1, 249 (2023). [Google Scholar]
  7. K. Fu, M. Chen, S. Wei, X. Zhong, J. Nucl. Mater. 559, 153475 (2022). [CrossRef] [Google Scholar]
  8. H. L, J. Gao, J. Chen, T. Li, Y. Liang, B. Hu, F. Ma, Y. Xue, Y. Yan, Environ. Res. 239, 117358 (2023). [CrossRef] [Google Scholar]
  9. C. Prieto, P. Tagle-Salazar, D. Patino, J. Schallenberg-Rodriguez, P. Lyons, L. Cabeza, 86, 111203 (2024). [Google Scholar]
  10. E. Vernon, M. Sherrock, R. Taylor, D. Goddard, N. Barron, A. Simpson, A. Banford, M. Edmondson, J. Spencer, J. Turner, L. O’Brien, G. Rossiter. Fuelling Net Zero: Advanced Nuclear Fuel Cycle Roadmaps for a Clean Energy Future, https://afcp.nnl.co.uk/wp-content/uploads/sites/3/2021/06/AFCP-AdvancedNuclear-Roadmaps.pdf (2021). [Google Scholar]
  11. M.F. Simpson, Developments of spent nuclear fuel pyroprocessing technology at Idaho national laboratory. INL/ETX-12-25124 (2012). [CrossRef] [Google Scholar]
  12. Guide to technology readiness levels for the NDA estate and its supply chain. NDA, 2, https://assets.publishing.service.gov.uk/media/5a7f96f7e5274a2e8ab4d194/Guide-to-Technology-Readiness-Levels-for-the-NDA-Estate-and-its-SupplyChain.pdf (2014). [Google Scholar]
  13. M. Harrison, Waste from Pyroprocessing: A Salty Challenge for Immobilisation Science, Nucl. Future. 17, 39 (2021). [Google Scholar]
  14. R. Mossop, C. Grove, M. Edmondson, Modelling the potential impact of an MSR fast reactor on the UK nuclear stockpile. In preparation. [Google Scholar]
  15. R. Gregg, C. Grove, Analysis of the UK nuclear fission roadmap using the ORION fuel cycle modelling code, Proceedings of the IChemE Nuclear Fuel Cycle Conference, Manchester, United Kingdom, (2012). [Google Scholar]
  16. Evaluation and Viability of Liquid Fuel Fast Reactor System, EVOL (Project n°249696), Final Report, https://cordis.europa.eu/docs/results/249/249696/final1-final-report-f.pdf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.