Open Access
Issue |
EPJ Web Conf.
Volume 323, 2025
22nd International Metrology Congress (CIM2025)
|
|
---|---|---|
Article Number | 10001 | |
Number of page(s) | 5 | |
Section | Materials | |
DOI | https://doi.org/10.1051/epjconf/202532310001 | |
Published online | 07 April 2025 |
- Global Cooling Watch 2023. United Nations Environment Programme. (2023). https://doi.org/10.59117/20.500.11822/44243 [Google Scholar]
- X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 370, 786 (2020). https://doi.org/10.1126/science.abb0971 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- M. Chen, D. Pang, X. Chen, H. Yan, Y. Yang, Passive daytime radiative cooling: Fundamentals, material designs, and applications. EcoMat 4, 12153 (2022). https://doi.org/10.1002/eom2.12153 [Google Scholar]
- L. Chen, K. Zhang, M. Ma, S. Tang, F. Li, X. Niu, Sub-ambient radiative cooling and its application in buildings. Build. Simul. 13, 1165 (2020). https://doi.org/10.1007/s12273-020-0646-x [Google Scholar]
- X. Yu, J. Chan, C. Chen, Review of radiative cooling materials: Performance evaluation and design approaches. Nano Energy 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259 [Google Scholar]
- D. Xu, S. Boncoeur, G. Tan, J. Xu, H. Qian, D. Zhao, Energy saving potential of a fresh air pre-cooling system using radiative sky cooling. Build. Simul. 15, 167 (2022). https://doi.org/10.1007/s12273-021-0802-y [Google Scholar]
- A. Aili, D. Zhao, J. Lu, Y. Zhai, X. Yin, G. Tan, R. Yang, A kW-scale, 24-hour continuously operational, radiative sky cooling system: Experimental demonstration and predictive modeling. Energy Convers. Manag. 186, 586 (2019). https://doi.org/10.1016/j.enconman.2019.03.006 [Google Scholar]
- D. Zhao, A. Aili, X. Yin, G. Tan, R. Yang, Roof-integrated radiative air-cooling system to achieve cooler attic for building energy saving. Energy Build. 203, 109453 (2019). https://doi.org/10.1016/j.enbuild.2019.109453 [Google Scholar]
- K. Bu, X. Huang, X. Li, H. Bao, Consistent Assessment of the Cooling Performance of Radiative Cooling Materials. Adv. Funct. Mater. 33, 2307191 (2023). https://doi.org/10.1002/adfm.202307191 [Google Scholar]
- L. Carlosena, Á. Ruiz-Pardo, J. Feng, O. Irulegi, R.J. Hernández-Minguillón, M. Santamouris, On the energy potential of daytime radiative cooling for urban heat island mitigation. Sol. Energy 208, 430 (2020). https://doi.org/10.1016/j.solener.2020.08.015 [Google Scholar]
- M. Zeyghami, D.Y. Goswami, E. Stefanakos, A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol. Energy Mater. Sol. Cells 178, 115 (2018). https://doi.org/10.1016/j.solmat.2018.01.015 [Google Scholar]
- C. Xu, X. Ao, B. Zhao, G. Pei, A novel selective emissivity spectrum for radiative sky cooling. Sol. Energy Mater. Sol. Cells 232, 111380 (2021). https://doi.org/10.1016/j.solmat.2021.111380 [Google Scholar]
- M.A. Kecebas, P. Menguc, K. Sendur, Spectral Emissivity Profiles for Radiative Cooling. ACS App. Opt. Mat. 2, 1010 (2024). https://doi.org/10.1021/acsaom.3c00092 [Google Scholar]
- X. Li, J. Peoples, Z. Huang, Z. Zhao, J. Qiu, X. Ruan, Full Daytime Sub-ambient Radiative Cooling in Commercial-like Paints with High Figure of Merit. Cell Rep. 1, 100221 (2020). https://doi.org/10.1016/j.xcrp.2020.100221 [Google Scholar]
- E. Rephaeli, A. Raman, S. Fan, Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling. Nano Lett. 13, 1457 (2013). https://doi.org/10.1021/nl4004283 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nat. 515, 540 (2014). https://doi.org/10.1038/nature13883 [Google Scholar]
- A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, M. Di Capua H, L. Zhao, L. Zhang, A.M. Guzman, E.N. Wang, Highperformance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5, 9480 (2019). https://doi.org/10.1126/sciadv.aat9480 [Google Scholar]
- A. Leroy, B. Bhatia, J. Sircar, E.N. Wang, Thermal transport in solar-reflecting and infrared-transparent polyethylene aerogels. Int. J. Heat Mass Transf. 184, 122307 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122307 [Google Scholar]
- E.A. Goldstein, A.P. Raman, S. Fan, Subambient non-evaporative fluid cooling with the sky. Nat. Energy 2, 17143 (2017). https://doi.org/10.1038/nenergy.2017.143 [Google Scholar]
- L. Zhou, X. Yin, Q. Gan, Best practices for radiative cooling. Nat. Sustain 6, 1030 (2023). https://doi.org/10.1038/s41893-023-01170-0 [Google Scholar]
- C. Sui, P.-C. Hsu, Standardizing the Thermodynamic Definition of Daytime Subambient Radiative Cooling. ACS Energy Lett. 9, 2997 (2024). https://doi.org/10.1021/acsenergylett.4c00909 [Google Scholar]
- X. Ao, M. Hu, B. Zhao, N. Chen, G. Pei, C. Zou, Preliminary experimental study of a specular and a diffuse surface for daytime radiative cooling. Sol. Energy Mater. Sol. Cells 191, 290 (2019). https://doi.org/10.1016/j.solmat.2018.11.032 [Google Scholar]
- Z. Huang, X. Ruan, Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 104, 890 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.009 [Google Scholar]
- H. Xin, M. Jyotirmoy, R. Aaswath, Do-ityourself radiative cooler as a radiative cooling standard and cooling component for device design. J. Photonics Energy 12, 012112 (2021). https://doi.org/10.1117/1.JPE.12.012112 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.