Open Access
Issue
EPJ Web Conf.
Volume 324, 2025
V International Conference on Nuclear Structure and Dynamics (NSD2024)
Article Number 00026
Number of page(s) 5
DOI https://doi.org/10.1051/epjconf/202532400026
Published online 11 April 2025
  1. L. Fortunat», Solutions of the Bohr Hamiltonian, a compendium. Eur. Phys. J. A 26, 1–30 (2005). https://doi.org/10.1140/epjad/i2005-07-115-8 [CrossRef] [Google Scholar]
  2. R. F. Casten, Shape phase transitions and critical-point phenomena in atomic nuclei. Nature Phys. 2, 811–820 (2006). https://doi.org/10.1038/nphys451 [CrossRef] [Google Scholar]
  3. R. F. Casten, E. A. McCutchan, Quantum phase tran- sitions and structural evolution in nuclei. J. Phys. G: Nucl. Part. Phys. 34, R285 (2007). https://doi.org/10.1088/0954-3899/34/7/R01 [CrossRef] [Google Scholar]
  4. P. Cejnar, J. Jolie, R. F. Casten, Quantum phase tran- sitions in the shape of atomic nuclei. Rev. Mod. Phys. 82, 2155 (2010). https://doi.org/10.1103/RevModPhys.82.2155 [CrossRef] [Google Scholar]
  5. P. Buganu, L. Fortunato, Recent approaches to quadropole collectivity: models, solutions and applica- tions based on the Bohr hamiltonian. J. Phys. G: Nucl. Part. Phys. 43, 093003 (2016). https://doi.org/10.1088/0954-3899/43/9/093003 [CrossRef] [Google Scholar]
  6. L. Fortunato, Quantum phase transitions in algebraic and collective models of nuclear structure. Prog. Part. Nucl. Phys. 121, 103891 (2021). https://doi.org/10.1016/j.ppnp.2021.103891 [CrossRef] [Google Scholar]
  7. F. Iachello, A. Arima, The Interacting Boson Model, (Cambridge University Press, Cambridge, England, 1987) [CrossRef] [Google Scholar]
  8. K. Heyde, P. Van Isacker, M. Waroquier, J. L. Wood, R. A. Meyer, Coexistence in odd-mass nu- clei. Phys. Rep. 102, 291–393 (1983). https://doi.org/10.1016/0370-1573(83)90085-6 [CrossRef] [Google Scholar]
  9. J. L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, P. van Duppen, Coexistence in even-mass nuclei. Phys. Rep. 215, 101–201 (1992). https://doi.org/10.1016/0370-1573(92)90095-H [CrossRef] [Google Scholar]
  10. K. Heyde, J. L. Wood, Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1655 (2011). https://doi.org/10.1103/RevModPhys.83.1467 [CrossRef] [Google Scholar]
  11. J. L. Wood, K. Heyde, A focus on shape coex- istence in nuclei. J. Phys. G: Nucl. Part. Phys. 43, 020402 (2016). https://doi.org/10.1088/0954-3899/43/2/020402 [CrossRef] [Google Scholar]
  12. A. Martinou, D. Bonatsos, T. J. Mertzimekis, K. E. Karakatsanis, I. E. Assimakis, S. K. Peroulis, S. Sarantopoulou, N. Minkov, The islands of shape coexistence within the Elliott and the proxy-SU(3) Models. Eur. Phys. J. A 57, 84 (2021). https://doi.org/10.1140/epja/s10050-021-00396-w [CrossRef] [Google Scholar]
  13. A. Martinou, D. Bonatsos, S. K. Peroulis, K. E. Karakatsanis, T. J. Mertzimekis, N. Minkov, Islands of shape coexistence: theoretical predictions and ex- perimental evidence. Symmetry 15, 29 (2023). https://doi.org/10.3390/sym15010029 [Google Scholar]
  14. P. E. Garrett, M. Zielmska, E. Clément, An exper- imental view on shape coexistence in nuclei. Prog. Part. Nucl. Phys. 124, 103931 (2022). https://doi.org/10.1016/j.ppnp.2021.103931 [CrossRef] [Google Scholar]
  15. D. Bonatsos, A. Martinou, S. K. Peroulis, T. J. Mertzimekis, N. Minkov, Signatures for shape coex- istence and shape/phase transitions in even-even nu- clei. J. Phys. G: Nucl. Part. Phys. 50, 075105 (2023). https://doi.org/10.1088/1361-6471/acd70b [CrossRef] [Google Scholar]
  16. R. Budaca, P. Buganu, A. I. Budaca, Bohr model de- scription of the critical point for the first order shape phase transition. Phys. Lett. B 776, 26–31 (2018). https://doi.org/10.1016/j.physletb.2017.11.019 [CrossRef] [Google Scholar]
  17. R. Budaca, A. I. Budaca, Coexistence, mixing and fluctuation of nuclear shapes. EPL 123, 42001 (2018). https://doi.org/10.1209/0295-5075/123/42001 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. R. Budaca, P. Buganu, A. I. Budaca, Geometrical model description of shape coexistence in Se isotopes. Nucl. Phys. A 990, 137–148 (2019). https://doi.org/10.1016/j.nuclphysa.2019.07.006 [CrossRef] [Google Scholar]
  19. R. Budaca, A. I. Budaca, P. Buganu, Application of the Bohr Hamiltonian with a double-well sextic poten- tial to collective states in Mo isotopes. J. Phys. G: Nucl. Part. Phys. 46, 125102 (2019). https://doi.org/10.1088/1361-6471/ab4498 [CrossRef] [Google Scholar]
  20. A. Bohr, B. R. Mottelson, Nuclear Structure, vol. 2: Nuclear deformation (W. A. Benjamin, 1975). [Google Scholar]
  21. A. G. Ushveridze, Quasi-exactly solvable models in quantum mechanics (IOP, 1994). [Google Scholar]
  22. A. A. Raduta, P. Buganu, Toward a new descrip- tion of triaxial nuclei. Phys. Rev. C 83, 034313 (2011). https://doi.org/10.1103/PhysRevC.83.034313 [CrossRef] [Google Scholar]
  23. P. Buganu, A. A. Raduta, A. Faessler, New features of the triaxial nuclei described with a coherent state model. J. Phys. G: Nucl. Part. Phys. 39, 025103 (2012). https://doi.org/10.1088/0954-3899/39/2/025103 [CrossRef] [Google Scholar]
  24. A. A. Raduta, P. Buganu, Description of the iso- tope chain 180-196Pt within several solvable approaches. Phys. Rev. C 88, 064328 (2013). https://doi.org/10.1103/PhysRevC.88.064328 [CrossRef] [Google Scholar]
  25. A. A. Raduta, P. Buganu, Application of the sextic oscillator with a centrifugal barrier and the spheroidal equation for some X(5) candidate nuclei. J. Phys. G: Nucl. Part. Phys. 40, 025108 (2013). https://doi.org/10.1103/10.1088/0954-3899/40/2/025108 [CrossRef] [Google Scholar]
  26. P. Buganu, R. Budaca, Sextic potential for γ- rigid prolate nuclei. J. Phys. G: Nucl. Part. Phys. 42, 105106 (2015). https://doi.org/10.1088/0954-3899/42/10/105106 [CrossRef] [Google Scholar]
  27. P. Buganu, R. Budaca, Analytical solution for the Davydov-Chaban Hamiltonian with a sextic potential for γ = 30o. Phys. Rev. C 91, 014306 (2015). https://doi.org/10.1103/PhysRevC.91.014306 [CrossRef] [Google Scholar]
  28. R. Budaca, P. Buganu, M. Chabab, A. Lahbas, M. Oulne, Extended study on a quasi-exact solution of the Bohr Hamiltonian. Ann. Phys. (NY) 375, 65–90 (2016). https://doi.org/10.1016/j.aop.2016.09.011 [CrossRef] [Google Scholar]
  29. A. Lahbas, P. Buganu, R. Budaca, Quasi-exact de- scription of the γ-unstable shape phase transition. Mod. Phys. Lett. A 35, 2050085 (2020). https://doi.org/10.1142/S0217732320500856 [CrossRef] [Google Scholar]
  30. G. Lévai, J. M. Arias, Search for critical-point nu- clei in terms of the sextic osciilator. Phys. Rev. C 81, 044304 (2010). https://doi.org/10.1103/PhysRevC.81.044304 [CrossRef] [Google Scholar]
  31. G. Lévai, J. M. Arias, The sextic oscillator as a γ- independent potential. Phys. Rev. C 69, 014304 (2004). https://doi.org/10.1103/PhysRevC.69.014304 [CrossRef] [Google Scholar]
  32. H. Taseli, A. Zafer, Bessel basis with appli- cations: N-dimensional isotropic polynomial os- cillators. Int. J. Quant. Chem. 63, 935 (1997). https://doi.org/10.1002/(SICI)1097-461X(1997)63:5<935::AID-QUA4>3.0.CO;2-X [CrossRef] [Google Scholar]
  33. A. Ait Ben Mennana, R. Benjedi, R. Budaca, P. Buganu, Y. El Bassem, A. Lahbas, M. Oulne, Mixing of the coexisting shapes in the ground state of 74Ge and 74Kr. Phys. Scr. 96, 125306 (2021). https://doi.org/10.1088/1402-4896/ac2082 [CrossRef] [Google Scholar]
  34. A. Ait Ben Mennana, R. Benjedi, R. Budaca, P. Buganu, Y. El Bassem, A. Lahbas, M. Oulne, Shape and structure for the low-lying states of the 80Ge nu- cleus. Phys. Rev. C 105, 034347 (2022). https://doi.org/10.1103/PhysRevC.105.034347 [CrossRef] [Google Scholar]
  35. R. Benjedi, R. Budaca, P. Buganu, Y. El Bassem, A. Lahbas, M. Oulne, Shapes and structure for the low- est states of the 4244Ca isotopes. Phys. Scr. 99, 055307 (2024). https://doi.org/10.1088/1402-4896/ad398d [CrossRef] [Google Scholar]
  36. F. Iachello, Dynamic symmetries at the critical point. Phys. Rev. Lett. 85, 3580 (2000). https://doi.org/10.1103/PhysRevLett.85.3580 [CrossRef] [PubMed] [Google Scholar]
  37. F. Iachello, Analytic description of critical point nu- clei in a spherical-axially deformed shape phase tran- sition. Phys. Rev. Lett. 87, 052502 (2001). https://doi.org/10.1103/PhysRevLett.87.052502 [CrossRef] [PubMed] [Google Scholar]
  38. P. Buganu, A. A. Raduta, Energy spectra, E2 transition probabilities and shape deformations for the even-even isotopes 180-196Pt. Rom. J. Phys. 60, 161–178 (2015). https://rjp.nipne.ro/2015_60_1-2/RomJPhys.60.p161.pdf [Google Scholar]
  39. G. Gneuss, U. Mosel, W. Greiner, A new treatment of the collective nuclear Hamiltonian. Phys. Lett. B 30, 397 (1969). https://doi.org/10.1016/0370-2693(69)90469-9 [CrossRef] [Google Scholar]
  40. G. Gneuss, W. Greiner, Collective potential energy surfaces and nuclear structure. Nucl. Phys. A 171, 449 (1971). https://doi.org/10.1016/0375-9474(71)90596-3 [CrossRef] [Google Scholar]
  41. P. O. Hess, M. Seiwert, J. Maruhn, W. Greiner, General collective model and its application to 29328U. Z Physik A 296, 147 (1980). https://doi.org/10.1007/BF01412656 [CrossRef] [Google Scholar]
  42. J. L. Wood, E. F. Zganjar, C. De Coster, K. Heyde, Electric monopole transitions from low energy excita- tions in nuclei. Nucl. Phys. A 651, 323–368 (1999). https://doi.org/10.1016/S0375-9474(99)00143-8 [CrossRef] [Google Scholar]
  43. P. Buganu, R. Budaca, A. I. Budaca, Shapes co- existence in the frame of the Bohr model. Nucl. Th. 38, 68–73 (2019). http://ntl.inrne.bas.bg/workshop/2019/contributions/p09_Buganu_2019.pdf [Google Scholar]
  44. S. Sekal, et al., Low-spin states in 80Ge populated in the ß decay of the 80Ga 3- isomer. Phys. Rev. C 104, 024317 (2021). https://doi.org/10.1103/PhysRevC.104.024317 [CrossRef] [Google Scholar]
  45. F. H. Garcia, et al., Absence of low-energy shape coexistence in 80Ge: The nonobservation of a pro- posed excited 0+ level at 639 keV. Phys. Rev. Lett. 125, 172501 (2020). https://doi.org/10.1103/PhysRevLett.125.172501 [CrossRef] [PubMed] [Google Scholar]
  46. T. Niksić, N. Paar, D. Vretenar, P. Ring, DIRHB- A relativistic self-consistent mean-field framework for atomic nuclei. Comput. Phys. Commun. 185, 1808–1821 (2014). https://doi.org/10.1016/jxpc.2014.02.027. [CrossRef] [Google Scholar]
  47. T. Wang, A collective description of the unusu- ally low ratio B4/2 = B(E2;4+ 2+)/B(E2;2+ 0+). EPL 129, 52001 (2020). https://doi.org/10.1209/0295-5075/129/52001 [CrossRef] [Google Scholar]
  48. Y. Zhang, Y.-W. He, D. Karlsson, C. Qi, F. Pan, J. P. Draayer, A theoretical interpretation of the anomalous reduced E2 transition probabilities along the yrast line of neutron-deficient nuclei. Phys. Lett. B 834, 137442 (2022). https://doi.org/10.1016/j.physletb.2022.137443 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.