Open Access
Issue
EPJ Web Conf.
Volume 325, 2025
International Conference on Advanced Physics for Sustainable Future: Innovations and Solutions (IEMPHYS-24)
Article Number 01003
Number of page(s) 13
DOI https://doi.org/10.1051/epjconf/202532501003
Published online 05 May 2025
  1. Kenneth S. Krane, Introductory Nuclear Physics (John Wiley and Sons, Inc., United States of America, 1998) 272–292 [Google Scholar]
  2. Dr. S.N. Ghoshal, Nuclear Physics (S.Chand and Company ltd. Inc., India, 2021) 102149 [Google Scholar]
  3. A. Gupta, C. Lahiri, and S. Sarkar, Bound and continuum state β decay of bare atoms: Enhancement of decay rate and changes in β decay branching, Phys. Rev. C 100, 064313 (2019). https://doi.org/10.1103/PhysRevC.100.064313 [CrossRef] [Google Scholar]
  4. R. Daudel, M. Jean and M. Lecoin, J. Phys. Radium 8, 238 (1947). [CrossRef] [EDP Sciences] [Google Scholar]
  5. J. N. Bahcall, Theory of Bound-State Beta Decay, Phys. Rev. 124, 495 (1961). https://doi.org/10.1103/PhysRev.124.495 [CrossRef] [Google Scholar]
  6. K. Takahashi and K. Yokoi, Beta-decay rates of highly ionized heavy atoms in stellar interiors, At. Data Nucl. Data Tables 36, 375 (1987). https://doi.org/10.1016/0092-640X(87)90010-6 [CrossRef] [Google Scholar]
  7. K. Takahashi, R. N. Boyd, G. J. Mathews, and K. Yokoi, Bound-state beta decay of highly ionized atoms, Phys. Rev. C 36, 1522 (1987). https://doi.org/10.1103/PhysRevC.36.1522 [CrossRef] [PubMed] [Google Scholar]
  8. M. Jung et al., First observation of bound-state β decay, Phys. Rev. Lett. 69, 2164, (1992). https://doi.org/10.1103/PhysRevLett.69.2164 [CrossRef] [PubMed] [Google Scholar]
  9. F. Bosch et al., Observation of Bound-State β Decay of Fully Ionized 187Re : 187Re 187Os Cosmochronometry, Phys. Rev. Lett. 77, 5190, (1996). https://doi.org/10.1103/PhysRevLett.77.5190 [CrossRef] [PubMed] [Google Scholar]
  10. A. Gupta, C. Lahiri, and S. Sarkar, Allowed β decay of bare atoms with A ≈ 60 80 in stellar environments, Phys. Rev. C 108, 015805 (2023). https://dx.doi.org/10.1103/PhysRevC.108.015805 [CrossRef] [Google Scholar]
  11. R. S. Sidhu et al., Measurement of the bound-state beta decay of bare 205Tl+ ions at the ESR, EPJ Web of Conferences 279, 06010, (2023). https://doi.org/10.1051/epjconf/202327906010 [CrossRef] [EDP Sciences] [Google Scholar]
  12. K. Volanis, A Theoretical Study on the Half-life of Bound-State Beta Decay (BSBD) of Long-Lived Fission Products, Dissertation, KTH, 2024. https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-352137. [Google Scholar]
  13. M. Joyce, Chapter 15 Radioactive Waste Management and Disposal, Nuclear Engineering, 357 (2018). https://doi.org/10.1016/B978-0-08-100962-8.00015-9. [Google Scholar]
  14. H. Zerriffi and A. Makhijani, The Nuclear Alchemy Gamble An Assessment of Transmutation as a Nuclear Waste Management Strategy, (2005). https://ieer.org/resource/reports/nuclear-alchemy-gamble/ [Google Scholar]
  15. A.B. Arslan, I. Yilmaz, G. Bakir, and H. Yapici, Transmutations of Long-Lived and Medium-Lived Fission Products Extracted from CANDU and PWR Spent Fuels in an Accelerator-Driven System, Science and Technology of Nuclear Installations, 2019, 4930274, 13, (2019). http://dx.doi.org/10.1155/2019/4930274 [CrossRef] [Google Scholar]
  16. T. Wakabayashi, Y. Tachi, M. Takahashi, Study on method to achieve high transmutation of LLFP using fast reactor, Sci Rep 9, 19156 (2019). https://doi.org/10.1038/s41598-019-55489-w [CrossRef] [PubMed] [Google Scholar]
  17. National Nuclear Data Centre: NNDC, https://www.nndc.bnl.gov/nudat3/ [Google Scholar]
  18. Atomic Spectra Database, https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html [Google Scholar]
  19. K. Takahashi and K. Yokoi, Nucl. Phys. A 404, 578 (1983). https://doi.org/10.1016/0375-9474(83)90277-4 [CrossRef] [Google Scholar]
  20. Hans. A. Bethe and Edwin E. Salpeter, Quantum mechanics of one and two electron atoms (Academic Press Inc., Germany, 1957) 63–70 [Google Scholar]
  21. F. Salvat, J. M. Fernandez-Verea, and W. Williamson. Jr., Accurate numerical solution of the radial Schrödinger and Dirac wave equations, Phys. Commun. 90, 151, (1995). https://doi.org/10.1016/0010-4655(95)00039-I [CrossRef] [Google Scholar]
  22. F. Salvat and J. M. Fernandez-Verea, RADIAL: A Fortran subroutine package for the solution of the radial Schrödinger and Dirac wave equations, Phys. Commun. 240, 165, (2019). https://doi.org/10.1016/j.cpc.2019.02.011 [CrossRef] [Google Scholar]
  23. B.H. Bransden and C.J. Joachain, Physics of atoms and molecules (John Wiley and Sons, Inc., Hong kong, 1990) 263–319 [Google Scholar]
  24. J. C. Slater, Atomic Shielding Constants, Phys. Rev. 36, 57, (1930). https://doi.org/10.1103/PhysRev.36.57 [CrossRef] [Google Scholar]
  25. E. J Konopinski and G. E. Uhlenbeck, On the Fermi Theory of β Radioactivity. II. The “Forbidden” Spectra, Phys. Rev. 60, 308 (1941). https://doi.org/10.1103/PhysRev.60.308 [CrossRef] [Google Scholar]
  26. N.B. Gove and M.J. Martin, Log-f tables for beta decay, At. Data Nucl. Data Tables 10, 205 (1971). https://doi.org/10.1016/S0092-640X(71)80026-8 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.