Open Access
Issue
EPJ Web Conf.
Volume 325, 2025
International Conference on Advanced Physics for Sustainable Future: Innovations and Solutions (IEMPHYS-24)
Article Number 01004
Number of page(s) 35
DOI https://doi.org/10.1051/epjconf/202532501004
Published online 05 May 2025
  1. S. M. Kumar, M. Shaheen, F. Zeba, M. Aruna, Precision agriculture in India Challenges and opportunities. Proceedings of the International Conference on Sustainable Computing in Science, Technology and Management, (SUSCOM), Amity University Rajasthan, Jaipur India, February 26-28 (2019). http://dx.doi.org/10.2139/ssrn.3363092 [Google Scholar]
  2. Y. Yokoyama, A. de Wit, T. Matsui, et al., Accuracy and robustness of a plant-level cabbage yield prediction system generated by assimilating UAV-based remote sensing data into a crop simulation model. Precision Agric (2024). https://doi.org/10.1007/s11119-024-10192-3 [Google Scholar]
  3. W.A. Bagwan, Revolutionizing agriculture: Geospatial technologies and precision farming in India, in Artificial Intelligence and Smart Agriculture, K. Pandey, N.L. Kushwaha, C.B. Pande, K.G. Singh (eds), Advances in Geographical and Environmental Sciences (Springer, Singapore, 2024). https://doi.org/10.1007/978-981-97-0341-8_3 [Google Scholar]
  4. E. Najdenko, F. Lorenz, K. Dittert, et al., Rapid in-field soil analysis of plant-available nutrients and pH for precision agriculture—a review. Precision Agric (2024). https://doi.org/10.1007/s11119-024-10181-6 [Google Scholar]
  5. C. Maraveas, D. Konar, D.K. Michopoulos, K.G. Arvanitis, K.P. Peppas, Harnessing quantum computing for smart agriculture: Empowering sustainable crop management and yield optimization. Computers and Electronics in Agriculture 218, 108680 (2024). https://doi.org/10.1016/j.compag.2024.108680 [CrossRef] [Google Scholar]
  6. L.O. Tedeschi, Transforming animal agriculture through hybrid modeling and quantum computing. J. Anim. Sci. 102(Supplement_3), 70–71 (2024). https://doi.org/10.1093/jas/skae234.078 [CrossRef] [Google Scholar]
  7. D. K. Deeba, O. R. Devi, M.S. Al Ansari, B.P. Reddy, M.H.T. Manohara, Y.A. Baker El-Ebiary, M. Rengarajan, Optimizing crop yield prediction in precision agriculture with hyperspectral imaging-unmixing and deep learning. Int. J. Adv. Comput. Sci. Appl. 14(12), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0141261 [Google Scholar]
  8. A. Gautam, M.B. Faruqui, N. Akhtar, U.B. Rashidullah Khan, Boosting precision agriculture using deep learning models on edge devices, in Intelligent Informatics, S.K. Pal, S.M. Thampi, A. Abraham (eds), ISI 2023, Smart Innovation, Systems and Technologies 389 (Springer, Singapore, 2025). https://doi.org/10.1007/978-981-97-2147-4_14 [Google Scholar]
  9. C. Chen, X. Wang, H. Chen, C. Wu, M. Mafarja, H. Turabieh, Towards precision fertilization: Multi-strategy grey wolf optimizer based model evaluation and yield estimation. Electronics 10(18), 2183 (2021). https://doi.org/10.3390/electronics10182183 [CrossRef] [Google Scholar]
  10. W. Yang, T. Guo, J. Luo, et al., Target-oriented prioritization: Targeted selection strategy by integrating organismal and molecular traits through predictive analytics in breeding. Genome Biol 23, 80 (2022). https://doi.org/10.1186/s13059-022-02650-w [CrossRef] [PubMed] [Google Scholar]
  11. K. Mythili, R. Rangaraj, Deep learning with particle swarm based hyperparameter tuning based crop recommendation for better crop yield for precision agriculture. Indian J. Sci. Technol. 14(17), 1325–1337 (2021). https://doi.org/10.17485/IJST/v14i17.450 [CrossRef] [Google Scholar]
  12. G. Faisal, S. Sreelakshmi, S.S.C., Crop yield prediction for smart agriculture with climatic parameters using random forest, in Advances in Computing and Data Sciences, M. Singh, V. Tyagi, P. Gupta, J. Flusser, T. Ören (eds), ICACDS 2023, Communications in Computer and Information Science 1848 (Springer, Cham, 2023). https://doi.org/10.1007/978-3-031-37940-6_30 [Google Scholar]
  13. R.M. Abd El-Aziz, A.I. Taloba, F.A. Alghamdi, Quantum computing optimization technique for IoT platform using modified deep residual approach. Alexandria Engineering J. 61(12), 12497–12509 (2022). https://doi.org/10.1016/j.aej.2022.06.029 [CrossRef] [Google Scholar]
  14. R.M. Abdullah, R. Basher, A.A. Alwan, A.Z. Abualkishik, Quantum computers for optimization the performance. Procedia Comput. Sci. 160, 54–60 (2019). https://doi.org/10.1016/j.procs.2019.09.443 [CrossRef] [Google Scholar]
  15. M. Javaid, A. Haleem, R.P. Singh, R. Suman, Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Networks 3, 150–164 (2022). https://doi.org/10.1016/j.ijin.2022.09.004 [CrossRef] [Google Scholar]
  16. D. Konar, A. Das Sarma, S. Bhandary, S. Bhattacharyya, A. Cangi, V. Aggarwal, A shallow hybrid classical–quantum spiking feedforward neural network for noise-robust image classification. Appl. Soft Comput. 136, 110099 (2023). https://doi.org/10.1016/j.asoc.2023.110099 [CrossRef] [Google Scholar]
  17. C. Maraveas, D. Piromalis, K.G. Arvanitis, T. Bartzanas, D. Loukatos, Applications of IoT for optimized greenhouse environment and resources management. Computers Electron. Agric. 198, 106993 (2022). https://doi.org/10.1016/j.compag.2022.106993 [CrossRef] [Google Scholar]
  18. T. Nouioua, A.H. Belbachir, The quantum computer for accelerating image processing and strengthening the security of information systems. Chinese J. Phys. 81, 104–124 (2023). https://doi.org/10.1016/j.cjph.2022.11.006 [CrossRef] [Google Scholar]
  19. W. Purcell, T. Neubauer, K. Mallinger, Digital twins in agriculture: Challenges and opportunities for environmental sustainability. Curr. Opin. Environ. Sustain. 61, 101252 (2023). https://doi.org/10.1016/j.cosust.2022.101252 [CrossRef] [Google Scholar]
  20. M.E. Latino, A. Corallo, M. Menegoli, B. Nuzzo, Agriculture 4.0 as enabler of sustainable agri-food: A proposed taxonomy, in IEEE Trans. Eng. Manag., vol. 70, no. 10, pp. 3678–3696, Oct. 2023. https://doi.org/10.1109/TEM.2021.3101548 [CrossRef] [Google Scholar]
  21. A. Mukerjee, G. Mukherjee, B. Basu Mallik, Quantum active learning for vegetable plant phenology annotation, in Proceedings of the Fifth International Conference on Emerging Trends in Mathematical Sciences & Computing (IEMSC-24), B.B. Mallik, K. Deyasi, S. Das, S. Ghosh, S. Jana (eds), IEMSC 2024, Information Systems Engineering and Management 10 (Springer, Cham, 2024). https://doi.org/10.1007/978-3-031-71125-1_2 [Google Scholar]
  22. S.K. Roy, D. De, Genetic algorithm-based Internet of Precision Agricultural Things (IopaT) for Agriculture 4.0. Internet Things 18, 100201 (2022). https://doi.org/10.1016/j.iot.2020.100201 [CrossRef] [Google Scholar]
  23. X. An, M. Li, L. Zheng, H. Sun, Eliminating the interference of soil moisture and particle size on predicting soil total nitrogen content using a NIRS-based portable detector. Computers Electron Agric 112, 47–53 (2015). https://doi.org/10.1016/j.compag.2014.11.003 [CrossRef] [Google Scholar]
  24. A. Guerrero, S. De Neve, A.M. Mouazen, Current sensor technologies for in situ and on-line measurement of soil nitrogen for variable rate fertilization: A review, in D.L. Sparks (Ed.), Advances in Agronomy 168, pp. 1–38 (Academic Press, 2021). https://doi.org/10.1016/bs.agron.2021.02.001 [CrossRef] [Google Scholar]
  25. A. Bouguettaya, H. Zarzour, A. Kechida, et al., Deep learning techniques to classify agricultural crops through UAV imagery: A review. Neural Comput Appl 34, 9511–9536 (2022). https://doi.org/10.1007/s00521-022-07104-9 [CrossRef] [PubMed] [Google Scholar]
  26. A.G. Gad, Particle swarm optimization algorithm and its applications: A systematic review. Arch Computat Methods Eng 29, 2531–2561 (2022). https://doi.org/10.1007/s11831-021-09694-4 [CrossRef] [Google Scholar]
  27. H.P. Paudel, M. Syamlal, S.E. Crawford, Y.-L. Lee, R.A. Shugayev, P. Lu, P.R. Ohodnicki, D. Mollot, Y. Duan, Quantum computing and simulations for energy applications: Review and perspective. ACS Eng Au 2(3), 151–196 (2022). https://doi.org/10.1021/acsengineeringau.1c00033 [CrossRef] [Google Scholar]
  28. S.F. Ahmed, M.S.B. Alam, M. Hassan, et al., Deep learning modelling techniques: Current progress, applications, advantages, and challenges. Artif Intell Rev 56, 13521–13617 (2023). https://doi.org/10.1007/s10462-023-10466-8 [CrossRef] [Google Scholar]
  29. A.U.H. Hashmi et al., Effects of IoT communication protocols for precision agriculture in outdoor environments, in IEEE Access 12, pp. 46410–46421 (2024). https://doi.org/10.1109/ACCESS.2024.3381522 [CrossRef] [Google Scholar]
  30. C. Durán, R. Carrasco, I. Soto, et al., Quantum algorithms: Applications, criteria and metrics. Complex Intell. Syst. 9, 6373–6392 (2023). https://doi.org/10.1007/s40747-023-01073-9 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.