Open Access
Issue
EPJ Web Conf.
Volume 325, 2025
International Conference on Advanced Physics for Sustainable Future: Innovations and Solutions (IEMPHYS-24)
Article Number 01006
Number of page(s) 11
DOI https://doi.org/10.1051/epjconf/202532501006
Published online 05 May 2025
  1. M. Amarnath, A. Heiner, and K. Gurunathan, Highly sensitive room temperature liquefied petroleum gas sensor based on CoSnO2 nanoislands deposited graphene layers. Synth. Met. 270, 116607 (2020). https://doi.org/10.1016/j.synthmet.2020.116607. [CrossRef] [Google Scholar]
  2. M.S. B. Reddy, S. Kailasa, B. Geeta Rani, P. Munindra, K. Bikshalu, and K.V. Rao, CeO2 nano-hexagons decorated rGO/CNT heterostructure for high-performance LPG sensing. SN Applied Sciences. 2, 3 (2020). https://doi.org/10.1007/s42452-020-2220-7. [CrossRef] [Google Scholar]
  3. R.S. Singh, Sulfur-doped silicon carbide nanotube as a sensor for detecting liquefied petroleum gas at room temperature. Diam. Relat. Mater. 124, 108932 (2022). https://doi.org/10.1016/j.diamond.2022.108932. [CrossRef] [Google Scholar]
  4. H. Rashid, A. Koel, and T. Rang, Simulations of propane and butane gas sensor based on pristine armchair graphene nanoribbon, in proceedings of the International Conference on Smart Engineering Materials (ICSEM), Bucharest, Romania, March 7-9 (2018). http://dx.doi.org/10.1088/1757-899X/362/1/012001. [Google Scholar]
  5. M. Singla, and N. Jaggi, Enhanced hydrogen gas adsorption properties of B, N, and Au co-doped graphene in o-, m-, and p-configurations: DFT study. Diam. Rel. Mater. 127, 109173 (2022). https://doi.org/10.1016/j.diamond.2022.109173. [CrossRef] [Google Scholar]
  6. I. Maity, S. Das, M. Gangopadhyay, and I. Maity, Understanding 2-propanol sensing mechanism of Pd modified graphene based gas sensor devices using DFT study, in proceedings of the 37th International Conference on VLSI Design and 23rd International Conference on Embedded Systems (VLSID), Kolkata, India, January 06-10 (2024). https://doi.org/10.1109/vlsid60093.2024.00011. [Google Scholar]
  7. A. Roy, D. Mondal, and D. Jana, First-principles calculations of group-IV carbide quantum dots and single-layer heterojunctions with optical activity and short-wave infrared emission for efficient gas sensing. ACS Appl. Nano Mater. 8, 4, 1852–1864, (2025). https://doi.org/10.1021/acsanm.4c06253. [CrossRef] [Google Scholar]
  8. A. Mahmood, T. Akram, and E.B. de Lima, Syntheses, spectroscopic investigation and electronic properties of two sulfonamide derivatives: A combined experimental and quantum chemical approach. J. Mol. Struct. 1108, 496–507 (2016). https://doi.org/10.1016/j.molstruc.2015.12.039. [CrossRef] [Google Scholar]
  9. Y.M. Riza, Md. R. Parves, F.A. Tithi, and S. Alam, Quantum chemical calculation and binding modes of H1R; a combined study of molecular docking and DFT for suggesting therapeutically potent H1R antagonist. In Silico. Pharmacol. 7, 1 (2019). https://doi.org/10.1007/s40203-019-0050-3. [CrossRef] [Google Scholar]
  10. Q. Fatima, H. Zhang, A.A. Haidry, R. Hussain, R.A. Alshgari, and S. Mohammad, Elucidating the optoelectronic properties Ag, Au and Pd doped graphene oxide using a DFT approach. Diam. Relat. Mater. 146, 111151 (2024). https://doi.org/10.1016/j.diamond.2024.111151. [CrossRef] [Google Scholar]
  11. M. Roksana, S. Drewniak, T. Pustelny, M. Chrubasik, and G. Gryglewicz, Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy. Materials. 11, 7, 1050 (2018). https://doi.org/10.3390/ma11071050. [CrossRef] [PubMed] [Google Scholar]
  12. A. I. Atyaa, N. D. Radhy, and L. S. Jasim, Synthesis and characterization of graphene oxide/hydrogel composites and their applications to adsorptive removal congo red from aqueous solution. J. Phys. Conf. Ser. 1234, 1, 012095 (2019). https://doi.org/10.1088/1742-6596/1234/1/012095. [CrossRef] [Google Scholar]
  13. N. Lim, H. Kim, Y. Pak, and Y. T. Byun, Enhanced NO2 sensing performance of graphene with thermally induced defects. Materials. 14, 9, 2347 (2021). https://doi.org/10.3390/ma14092347. [CrossRef] [PubMed] [Google Scholar]
  14. V. Nagarajan and R. Chandiramouli, Sensing ability of liquefied petroleum gas by epsilon phosphorene nanosheetsa DFT investigation. J. Mater. NanoSci. 9, 2, (2022). https://pubs.thesciencein.org/journal/index.php/jmns/article/view/285. [Google Scholar]
  15. I. Maity, K. Ghosh, H. Rahaman, and P. Bhattacharyya, Selectivity tuning of graphene oxide-based reliable gas sensor devices by tailoring the oxygen functional groups: A DFT study-based approach. IEEE Trans. Device Mater. Rel. 17, 4, 738–745 (2017). https://doi.org/10.1109/TDMR.2017.2766291. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.