Open Access
Issue |
EPJ Web Conf.
Volume 325, 2025
International Conference on Advanced Physics for Sustainable Future: Innovations and Solutions (IEMPHYS-24)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/epjconf/202532501012 | |
Published online | 05 May 2025 |
- J. VanderPlas, A.J. Connolly, Ž. Ivezić, A. Gray, Introduction to astroML: Machine learning for astrophysics, in proceedings of the conference on intelligent data understanding (Boulder, USA, 2012), IEEE, pp. 47–54. https://doi.org/10.1109/CIDU.2012.6382200 [Google Scholar]
- J.V. Rodríguez, I. Rodríguez-Rodríguez, W.L. Woo, On the application of machine learning in astronomy and astrophysics: A text-mining-based scientometricanalysis, Wiley Interdisciplinary Reviews: Data Min. and Knowl. Discov. 12(5), e1476 (2022). https://doi.org/10.1002/widm.1476 [Google Scholar]
- J. Manuel, C. González, Machine Learning in Astrophysics and Cosmology.Ph.D. thesis (2023). [Google Scholar]
- A.W. Graham, A galaxy classification grid that better recognizes early-type galaxymorphology, Monthl. Not. of the Roy. Astronom. Soc., 487(4), 4995–5009 (2019). https://doi.org/10.1093/mnras/stz1623 [Google Scholar]
- B.C. Barish, R. Weiss, Ligo and the detection of gravitational waves, Physicstoday 52(10), 44–50 (1999). https://doi.org/10.1063/1.882861 [Google Scholar]
- D.A. Fischer, A.W. Howard, G.P. Laughlin, B. Macintosh, S. Mahadevan, J. Sahlmann, J.C. Yee, Exoplan. Detec. techn., arXiv preprintarXiv:1505.06869 (2015). https://doi.org/10.48550/arXiv.1505.06869 [Google Scholar]
- M. Conceição, A. Krone-Martins, A. Da Silva, Upscaling of cosmological nbodysimulations, in proceedings of the 18th International Conference on e-Science (e-Science) (Salt Lake City, USA, 2022), IEEE, pp. 395–396. https://doi.org/10.1109/eScience55777.2022.00055 [Google Scholar]
- R.J. Gaitskell, Direct detection of dark matter, Annu. Rev. Nucl. Part. Sci., 54(1), 315–359 (2004). https://doi.org/10.1146/annurev.nucl.54.070103.181244 [CrossRef] [Google Scholar]
- E. Alpaydin, Machine learning, (MIT press, 2021). [CrossRef] [Google Scholar]
- X. P. Zhu, J. M. Dai, C. J. Bian, Y. Chen, S. Chen, C. Hu, Galaxy morphology classification with deep convolutional neural networks, Astrophy. and Spac. Scien., 364: 1–15 (2019). https://doi.org/10.1007/s10509-019-3540-1 [CrossRef] [Google Scholar]
- D. George, , E.A. Huerta, Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data, Phys. Lett. B, 778, pp.64–70 (2018). https://doi.org/10.1016/j.physletb.2017.12.053 [NASA ADS] [CrossRef] [Google Scholar]
- B. Becker, M. Vaccari, M. Prescott, T. Grobler, CNN architecture comparison for radio galaxy classification, Month. Notic. of the Roy. Astronom. Soc., 503(2), pp.1828–1846 (2021). https://doi.org/10.1093/mnras/stab325 [CrossRef] [Google Scholar]
- R. Li, N.R. Napolitano, N. Roy, C. Tortora, F. La Barbera, A. Sonnenfeld, C. Qiu, S. Liu, Galaxy light profile convolutional neural networks (GaLNets). I. Fast and accurate structural parameters for billion-galaxy samples, The Astrophys. Jour., 929(2), p.152 (2022). 10.3847/1538-4357/ac5ea0 [CrossRef] [Google Scholar]
- R.W. Bickley, C. Bottrell, M.H. Hani, S.L. Ellison, H. Teimoorinia, K.M. Yi, S. Wilkinson, S. Gwyn, M.J. Hudson, Convolutional neural network identification of galaxy postmergers in UNIONS using IllustrisTNG. Month. Not. of the Roy. Astronom. Soc., 504(1), pp.372–392 (2021). https://doi.org/10.1093/mnras/stab806 [CrossRef] [Google Scholar]
- A. Less, E. Cuoco, F. Morawski, C. Nicolaou, O. Lahav, LSTM and CNN application for core-collapse supernova search in gravitational wave real data, Astronom. & Astrophy., 669, p.A42 (2023). https://doi.org/10.1051/0004-6361/202142525 [CrossRef] [EDP Sciences] [Google Scholar]
- V.Y. Sandeep, S. Sen, K. Santosh, Analyzing and processing of astronomical images using deep learning techniques, in proceedings of the international conference on electronics, computing and communication technologies (CONECCT) (Bangalore, India, 2021), IEEE, pp. 01–06. https://doi.org/10.1109/CONECCT52877.2021.9622583 [Google Scholar]
- Z. Lin, N. Huang, C. Avestruz, W.K. Wu, S. Trivedi, J. Caldeira, B. Nord, DeepSZ: identification of Sunyaev–Zel’dovich galaxy clusters using deep learning, Month. Not. of the Roy. Astronom. Soc., 507(3), pp.4149–4164 (2021). https://doi.org/10.1093/mnras/stab2229 [CrossRef] [Google Scholar]
- M. Tucci, S. Paltani, W. G. Hartley, F. Dubath, N. Morisset, M. Bolzonella, S. Fotopoulou et al.: Euclid Quick Data Release (Q1). Photometric redshifts and physical properties of galaxies through the PHZ processing function. arXiv preprint arXiv:2503.15306 (2025). https://doi.org/10.48550/arXiv.2503.15306 [Google Scholar]
- M. Lochner, J.D. McEwen, H.V. Peiris, O. Lahav, M.K. Winter, Photometric supernova classification with machine learning, The Astrophy. Jour. Suppl. Seri., 225(2), p.31 (2016). 10.3847/0067-0049/225/2/31 [CrossRef] [Google Scholar]
- S. Ravanbakhsh, F. Lanusse, R. Mandelbaum, J. Schneider, B. Poczos, Enabling dark energy science with deep generative models of galaxy images, in proceedings of the Proceedings of the AAAI Conference on Artificial Intelligence (San Francisco, USA, 2017), PKP Publishing Services Network, Vol. 31, No. 1. https://doi.org/10.1609/aaai.v31i1.10755 [Google Scholar]
- M.J. Smith, J.E. Geach, R.A. Jackson, N. Arora, C. Stone, S. Courteau, Realistic galaxy image simulation via score-based generative models, Month. Not. of the Roy. Astronom. Soc., 511(2), pp.1808–1818 (2022). https://doi.org/10.1093/mnras/stac130 [CrossRef] [Google Scholar]
- H. Meskhidze, Can machine learning provide understanding? How cosmologists use machine learning to understand observations of the universe. Erkenntnis, 88(5), pp.1895–1909 (2023). https://doi.org/10.1007/s10670-021-00434-5 [CrossRef] [PubMed] [Google Scholar]
- M.H.Z. Haghighi, Analyzing astronomical data with machine learning techniques. arXiv preprint arXiv:2302.11573 (2023). https://doi.org/10.48550/arXiv.2302.11573 [Google Scholar]
- N.M. Ball, Techniques for massive-data machine learning in astronomy. In Statistical Challenges in Modern Astronomy V (pp. 473–478). Springer New York (2012). https://doi.org/10.1007/978-1-4614-3520-4_44 [CrossRef] [Google Scholar]
- B.S. Panigrahi, S. Artheeswari, W. Khan, G. Pavithra, S.K. Pathak, R. Bharanid-haran, Artificial intelligence in astrophysics: Automated detection of celestial objects and anomaly detection, in proceedings of the 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST) (Jamshedpur, India, 2024), IEEE, pp. 210–214. https://doi.org/10.1109/ICRTCST61793.2024.10578402 [Google Scholar]
- J. Kremer, K. Stensbo-Smidt, F. Gieseke, K.S. Pedersen, C. Igel, Big universe,big data : machine learning and image analysis for astronomy. IEEE Intellig. Syst., 32(2), 16–22 (2017). https://doi.org/10.1109/MIS.2017.40 [CrossRef] [Google Scholar]
- Z.C. Chen, S.S. Du, Q.G. Huang, Z.Q. You, Constraints on primordial-black-hole population and cosmic expansion history from gwtc-3, Jour. of Cosmol. Astro. Phys., 2023(03), 024 (2023). 10.1088/1475-7516/2023/03/024 [CrossRef] [Google Scholar]
- R. Kudritzki, M.A. Urbaneja, F. Bresolin, N. Przybilla, Extragalactic stellarastronomy with the brightest stars in the universe. in proceedings of the International Astronomical Union, Cambridge University Press, Vol. 3, pp. 313–326. https://doi.org/10.1017/S1743921308020644 [Google Scholar]
- M. Kordzanganeh, A. Utting, A. Scaife, Quantum machine learning for radioastronomy. arXiv preprint arXiv:2112.02655 (2021). https://doi.org/10.48550/arXiv.2112.02655 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.