Open Access
Issue
EPJ Web Conf.
Volume 325, 2025
International Conference on Advanced Physics for Sustainable Future: Innovations and Solutions (IEMPHYS-24)
Article Number 01011
Number of page(s) 13
DOI https://doi.org/10.1051/epjconf/202532501011
Published online 05 May 2025
  1. B. Emon, J. Bauer, Y. Jain, B. Jung, & T. Saif, Biophysics of tumor microenvironment and cancer metastasis-a mini review. Computational and structural biotechnology journal 16, 279–287 (2018). [CrossRef] [PubMed] [Google Scholar]
  2. O. Warburg, On the origin of cancer cells. Science 123(3191), 309–314, (1956). [CrossRef] [PubMed] [Google Scholar]
  3. J. Kwapień, & S. Drożdż, Physical approach to complex systems. Physics Reports 515(3-4), 115–226, (2012). [Google Scholar]
  4. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, John Willey & Sons, New York, NY, USA, 1977. [Google Scholar]
  5. A. Jamal, T. Murray, E. Ward, A. Samuels, R.C. Tiwari, A. Ghafoor, Cancer statistics. CA: Cancer J Clin. 55, 10–30, (2005). [CrossRef] [PubMed] [Google Scholar]
  6. P. Hogeweg, The roots of bioinformatics in theoretical biology. PLoS computational biology 7(3), e1002021, (2011). [Google Scholar]
  7. J. S Carew, P. Huang, Mitochondrial defects in cancer. Molecular cancer, 1, 1–12. (2002). [Google Scholar]
  8. G. Bonuccelli, D. Whitaker-Menezes, R. Castello-Cros, S. Pavlides, R. G. Pestell, A. Fatatis, M. P. Lisanti, The reverse Warburg effect: glycolysis inhibitors prevent the tumor-promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell cycle, 9(10), 1960–1971, (2010). [CrossRef] [PubMed] [Google Scholar]
  9. G. D. Fullerton, Basic concepts for nuclear magnetic resonance imaging. Magnetic resonance imaging, 1(1), 39–53 (1982). [Google Scholar]
  10. T. Geva, Magnetic resonance imaging: historical perspective. Journal of cardiovascular magnetic resonance, 8(4), 573–580,(2006). [Google Scholar]
  11. C. Andrews, A. Simmons,& S. Williams, Magnetic resonance imaging and spectroscopy. Physics Education, 31(2), 80, (1996). [Google Scholar]
  12. H. T. Edzes, D. Van Dusschoten, & H. Van As, Quantitative T2 imaging of plant tissues by means of multiecho MRI microscopy. Magnetic Resonance Imaging, 16(2), 185–196, (1998). [Google Scholar]
  13. D. A. Mankoff, A definition of molecular imaging. The Journal of Nuclear Medicine, 48(6), 18N (2007). [Google Scholar]
  14. S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, & H. Y. Chen, Functional nanoprobes for ultrasensitive detection of biomolecules. Chemical Society Reviews, 39(11), 4234–4243, (2010). [CrossRef] [PubMed] [Google Scholar]
  15. J. H. Park, L. Gu, G. Von Maltzahn, E. Ruoslahti, S. N. Bhatia, & M. J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature materials, 8(4), 331–336, (2009). [Google Scholar]
  16. Z. Li, & P. S. Conti, Radiopharmaceutical chemistry for positron emission tomography. Advanced drug delivery reviews, 62(11), 1031–1051. (2010). [CrossRef] [PubMed] [Google Scholar]
  17. Z. F. Li, & E. Ruckenstein, Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Letters, 4(8), 1463–1467, (2004). [Google Scholar]
  18. F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, & P. N. Prasad, In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystalsACS nano, 5(1), 413–423, (2011). [Google Scholar]
  19. Y. He, Y. Zhong, F. Peng, X. Wei, Y. Su, Y. Lu, & S. T. Lee, One-pot microwave synthesis of water-dispersible, ultraphoto-and pH-stable, and highly fluorescent silicon quantum dots. Journal of the American Chemical Society, 133(36), 14192–14195, (2011). [Google Scholar]
  20. A. Shiohara, S. Hanada, S. Prabakar, K. Fujioka, T. H. Lim, K. Yamamoto, & R. D. Tilley, Chemical reactions on surface molecules attached to silicon quantum dots. Journal of the American Chemical Society, 132(1), 248–253, (2010). [Google Scholar]
  21. S. Su, X. Wei, Y. Zhong, Y. Guo, Y. Su, Q. Huang, & Y. He, Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis. ACS nano, 6(3), 2582–2590, (2012). [CrossRef] [PubMed] [Google Scholar]
  22. Z. Liu, X. Sun, N. Nakayama-Ratchford, & H. Dai, Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS nano, 1(1), 50–56, (2007). [CrossRef] [PubMed] [Google Scholar]
  23. J.A. Flygare, T.H. Pillow, P. Aristoff, Antibody-drug conjugates for the treatment of cancer, Chem. Biol. Drug Des. 81, 113–121, (2013). [Google Scholar]
  24. L. W. Seymour, D. R. Ferry, D. J. Kerr, D. Rea, M. Whitlock, R. Poyner, & J. Cassidy, Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. International journal of oncology, 34(6), 1629–1636, (2009). [Google Scholar]
  25. A. Patnaik, K.P. Papadopoulos, A.W. Tolcher, M. Beeram, S. Urien, L.J. Schaaf, Phase I dose-escalation study of EZN-2208 (PEG-SN38), a novel conjugate of poly (ethylene) glycol and SN38, administered weekly in patients with advanced cancerCancer Chemother. Pharmacol. 71, 1499–1506, (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.