Open Access
Issue |
EPJ Web Conf.
Volume 325, 2025
International Conference on Advanced Physics for Sustainable Future: Innovations and Solutions (IEMPHYS-24)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/epjconf/202532501016 | |
Published online | 05 May 2025 |
- A. Patra, M. K. Nayak, A. Misra, Effects of Non-uniform Suction, Heat Generation/Absorption and Chemical Reaction with Activation Energy on MHD Falkner Skan Flow of Tangent Hyperbolic Nanofluid over a Stretching/ Shrinking Edge. Journal of Applied and Computational Mechanics, 6(3), 640–652 (2020). [Google Scholar]
- M. I. Afridi, M. Qasim, I. Khan, Entropy Generation Minimization in MHD Boundary Layer Flow over a Slendering Stretching Sheet in the Presence of Frictional and Joule Heating. Journal of the Korean Physical Society, 73, 1303–1309 (2018). [CrossRef] [Google Scholar]
- Z. Shah, P. Kumam, W. Deebani, Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation. Scientific Reports, 10, 4402 (2020). [CrossRef] [PubMed] [Google Scholar]
- G. Sandhya, G. Sarojamma, P. V. Satya Narayana, B. Venkateswarlu, Buoyancy forces and activation energy on the MHD radiative flow over an exponentially stretching sheet with second-order slip. Heat Transfer, 50(1), 784–800 (2021). [CrossRef] [Google Scholar]
- E. R. El-Zahar, A. M. Rashad, L. F. Seddek, Impacts of Viscous Dissipation and Brownian motion on Jeffrey Nanofluid Flow over an Unsteady Stretching Surface with Thermophoresis. Symmetry, 12(9), 1450 (2020). [CrossRef] [Google Scholar]
- M. A. Qureshi, Numerical Simulation of Heat Transfer Flow Subject to MHD of Williamson Nanofluid with Thermal Radiation. Symmetry, 13(1), 10 (2020). [CrossRef] [Google Scholar]
- S. Alqaed, J. Mustafa, M. Sharifpur, Numerical investigation and optimization of natural convection and entropy generation of alumina/𝐻2𝑂 nanofluid in a rectangular cavity in the presence of a magnetic field with artificial neural networks. Engineering Analysis with Boundary Elements, 140, 507–518 (2022). [CrossRef] [Google Scholar]
- Z. U. Din, A. Ali, A., M. De la Sen, G. Zaman, Entropy generation from convective radiative moving exponential porous fins with variable thermal conductivity and heat generations. Scientific Reports, 12, 1791 (2022). [CrossRef] [PubMed] [Google Scholar]
- Z. U. Din, A. Ali, A., G. Zaman, Entropy generation in moving exponential porous fins with natural convection, radiation and internal heat generation. Archive of Applied Mechanics, 92(3), 933–944 (2022). [CrossRef] [Google Scholar]
- H. K. Hamzah, F. H. Ali, M. Hatami, MHD mixed convection and entropy generation of CNT-water nanofluid in a wavy liddriven porous enclosure at different boundary conditions. Scientific Reports, 12, 2881 (2022). [CrossRef] [PubMed] [Google Scholar]
- A. Shahsavar, P. Farhadi, C. Yildiz, M. Moradi, M. Arici, Evaluation of entropy generation characteristics of boehmite alumina nanofluid with different shapes of nanoparticles in a helical heat sink. International Journal of Mechanical Sciences, 225, 107338 (2022). [CrossRef] [Google Scholar]
- M. Mahboobtosi, Kh. Hosseinzadeh, D.D. Ganji, Entropy generation analysis and hydrothermal optimization of ternary hybrid nanofluid flow suspended in polymer over curved stretching surface. International Journal of Thermofluids, 20, 100507 (2020). https://doi.org/10.1016/j.ijft.2023.100507 [CrossRef] [Google Scholar]
- R. M. Zulqarnain, .M. Nadeem, I. Siddique, et al. Impacts of entropy generation in second-grade fuzzy hybrid nanofluids on exponentially permeable stretching/shrinking surface. Scientific Reports, 13, 22132 (2023). https://doi.org/10.1038/s41598-023-48142-0 [CrossRef] [PubMed] [Google Scholar]
- K. Rafique, Z. Mahmood, A. Adnan, U. Khan, T. Muhammad, M. Abd, S. A. Bajri, H. Abd, Numerical investigation of entropy generation of Joule heating in non-axisymmetric flow of hybrid nanofluid towards stretching surface. Journal of Computational Design and Engineering, 11(2), 146–160 (2024). https://doi.org/10.1093/jcde/qwae029 [CrossRef] [Google Scholar]
- G. Ramasekhar, M. Jawad, S. Jakeer, S. Reddy, R. Reddy, Entropy Generation for Novel Trend of Biomedical Aspects on Magnetohydrodynamics Hybrid Nanofluid Flow Through a Stretching Cylinder. J. Nanofluids, 13, 1021–1029 (2024). [CrossRef] [Google Scholar]
- R. D. Murugan, N. Sivakumar, N. Tarakaramu, et al. Entropy generation on MHD motion of hybrid nanofluid with porous medium in presence of thermo-radiation and ohmic viscous dissipation. Discov Appl Sci, 6, 199 (2024). https://doi.org/10.1007/s42452-024-05866-6 [CrossRef] [Google Scholar]
- M. Rafiq, M. Shazadi, G. I. H. Aslam, N. B. Khedher, S. M. Tag-Eldin, K. Guedri, Entropy generation analysis of hybrid nanofluid through flexible tube with convective conditions. International Journal of Modern Physics B, 38, (16) 2450208 (2024). https://doi.org/10.1142/S0217979224502084 [CrossRef] [Google Scholar]
- S.S. Samantaray, A. Misra, S. Shaw, M. K. Nayak, S. Nazari, I. Boukhris, A. J. Chamkha, Recent advances on entropy analysis of composite nanofluids-A critical review. Results in Engineering, 22, 101980 (2024). https://doi.org/10.1016/j.rineng.2024.101980 [CrossRef] [Google Scholar]
- M. Sheikholeslami, D. D. Ganji, M. Gorji-Bandpay, S. Soleimani, Magnetic field effect on nanofluid flow and heat transfer using KKL model. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 795–807 (2014). [CrossRef] [Google Scholar]
- H. Heidary, R. Hosseini, M. Pirmohammadi, M. J. Kermani, Numerical study of magnetic field effect on nano-fluid forced convection in a channel. Journal of Magnetism and Magnetic Materials, 374, 11–17 (2015). [CrossRef] [Google Scholar]
- M. Sheikholeslami, M., D. D. Ganji, M. M. Rashidi, Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. Journal of Magnetism and Magnetic Materials, 416, 164–173 (2016). [CrossRef] [Google Scholar]
- M. Imran, U. Farooq, T. Muhammad, S. U. Khan, H. Waqas, Bioconvection transport of Carreau nanofluid with magnetic dipole and nonlinear thermal radiation. Case Studies in Thermal Engineering, 26, 101129 (2021). [CrossRef] [Google Scholar]
- B. Ali, S. Hussain, S. Abdal, M. M. Mehdi, Impact of Stefan blowing on thermal radiation and Cattaneo-Christov characteristics for nanofluid flow containing microorganisms with ablation/accretion of leading edge: FEM approach. The European Physical Journal Plus, 135, 821 (2020). [CrossRef] [Google Scholar]
- H. Waqas, M. Imran, T. Muhammad, S. M. Sait, R. Ellahi, On bio-convection thermal radiation in DarcyForchheimer flow of nanofluid with gyrotactic motile microorganism under Wu’s slip over-stretching cylinder/plate. International Journal of Numerical Methods for Heat and Fluid Flow, 31(5), 1520–1546 (2020). [Google Scholar]
- H. Waqas, M. Imran, T. Muhammad, S. M. Sait, R. Ellahi, Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk. Journal of Thermal Analysis and Calorimetry, 145(2), 523–539 (2021). [CrossRef] [Google Scholar]
- M. I. Khan, H. Waqas, S. U. Khan, M. Imran, Y-M. Chu, A. Abbasi, S. Kadry, Slip flow of micropolar nanofluid over a porous rotating disk with motile microorganisms, nonlinear thermal radiation and activation energy. International Communications in Heat and Mass Transfer, 122, 105161 (2021). [CrossRef] [Google Scholar]
- K. Al-Khaled, S. U. Khan, I. KhanChemically reactive bioconvection flow of tangent hyperbolic nanoliquid with gyrotactic microorganisms and nonlinear thermal radiation. Heliyon, 6(1), e03117, (2020). [CrossRef] [PubMed] [Google Scholar]
- Usman, W. A. Khan, N. Uddin, T. Muhammad, Heat and mass transport in an electrically conducting nanofluid flow over two-dimensional geometries. Heliyon, 9(8), e18377 (2023). https://doi.org/10.1016/j.heliyon.2023.e18377 [CrossRef] [PubMed] [Google Scholar]
- M. Arshad, F. M. Alharbi, A. Hassan, Q. Haider, A. Alhushaybari, S. M. Eldin, Z. A. L. Ahmad, A. M. Galal, Effect of inclined magnetic field on radiative heat and mass transfer in chemically reactive hybrid nanofluid flow due to dual stretching. Scientific Reports, 13(1), 1–16 (2023). https://doi.org/10.1038/s41598-023-34871-9 [CrossRef] [PubMed] [Google Scholar]
- F. Xu, Y. Cao, H. Gong, J. Li, Y. Xu, L. Shi, Mass Transport and Energy Conversion of Magnetic Nanofluids from Nanoparticles’ Movement and Liquid Manipulation. Processes, 12(5), 955 (2024). https://doi.org/10.3390/pr12050955 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.