Open Access
Issue
EPJ Web Conf.
Volume 325, 2025
International Conference on Advanced Physics for Sustainable Future: Innovations and Solutions (IEMPHYS-24)
Article Number 01015
Number of page(s) 14
DOI https://doi.org/10.1051/epjconf/202532501015
Published online 05 May 2025
  1. C. Watson, M. Kirkcaldie, G. Paxinos, The Brain: An Introduction to Functional Neuroanatomy (Academic Press, New York, 2010). [Google Scholar]
  2. J. Nolte, The Human Brain: An Introduction to Its Functional Anatomy (Mosby Elsevier, Philadelphia, 2009). [Google Scholar]
  3. D.R. Johnson, J.B. Guerin, C. Giannini, J.M. Morris, L.J. Eckel, T.J. Kaufmann, 2016 updates to the WHO brain tumor classification system: What the radiologist needs to know, Radiographics 37, 2164 (2017). https://doi.org/10.1148/rg.2017170033 [CrossRef] [PubMed] [Google Scholar]
  4. E. Wright, E.K. Amankwah, S.P. Winesett, G.F. Tuite, G. Jallo, C. Carey, et al., Incidentally found brain tumors in the pediatric population: A case series and proposed treatment algorithm, J. Neurooncol. 141, 355 (2019). https://doi.org/10.1007/s11060-018-03021-5 [CrossRef] [PubMed] [Google Scholar]
  5. M.W. Dubin, How the Brain Works (Wiley, New York, 2013). [Google Scholar]
  6. M.A. Nuñez, J.C.F. Miranda, E. de Oliveira, P.A. Rubino, S. Voscoboinik, R. Recalde, Brain stem anatomy and surgical approaches, in Comprehensive Overview of Modern Surgical Approaches to Intrinsic Brain Tumors (Elsevier, Amsterdam, 2019) p. 53. https://doi.org/10.1016/B978-0-323-58126-1.00006-6 [Google Scholar]
  7. C. Kurian, J. Joseph, Automated brain tumor detection and classification using deep learning techniques, Eur. Phys. J. Plus 137, 350 (2022). https://doi.org/10.1140/epjp/s13360-022-02588-3 [CrossRef] [Google Scholar]
  8. M. Hasan, S. Rahman, A hybrid deep learning model for brain tumor classification, Eur. Phys. J. Spec. Top. 232, 1189 (2023). https://doi.org/10.1140/epjs/s11734-023-00792-5 [Google Scholar]
  9. P. Singh, R. Sharma, Feature extraction and selection methods for brain MRI analysis: a survey, Eur. Phys. J. Plus 137, 700 (2022). https://doi.org/10.1140/epjp/s13360022-03021-6 [CrossRef] [Google Scholar]
  10. S. Li, Y. Huang, Deep convolutional neural networks for brain tumor detection: a comprehensive study, Eur. Phys. J. E 45, 63 (2022). https://doi.org/10.1140/epje/s10189-022-00132-7 [CrossRef] [PubMed] [Google Scholar]
  11. N.V. Shree, T.N.R. Kumar, Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network, Brain Inform. 5, 23 (2018). https://doi.org/10.1007/s40708-017-0075-5 [CrossRef] [PubMed] [Google Scholar]
  12. Research Dataset 1, Google Drive (2024). Available at: https://drive.google.com/drive/folders/1-CY4dWPOnPVVPHmJPQNTYHz4J9Dn0vY_?usp=drive_link [Google Scholar]
  13. Research Dataset 2, Google Drive (2024). Available at: https://drive.google.com/drive/folders/1D9GRT5WDTltfPj1RDKeJlkWsA6exRP?usp=drive_link [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.