Open Access
Issue
EPJ Web Conf.
Volume 325, 2025
International Conference on Advanced Physics for Sustainable Future: Innovations and Solutions (IEMPHYS-24)
Article Number 01014
Number of page(s) 13
DOI https://doi.org/10.1051/epjconf/202532501014
Published online 05 May 2025
  1. Parkin, M. Hayashi, and L. Thomas, Magnetic domain-wall racetrack memory. science, 320(5873), pp.190–194 (2008). [CrossRef] [PubMed] [Google Scholar]
  2. Hayashi, L. Thomas, R. Moriya, C. Rettner, & S. S. P. Parkin, Current controlled magnetic domain wall nanowire Shift register. Science 320, 209 (2008). [CrossRef] [PubMed] [Google Scholar]
  3. D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Magnetic domain-wall logic. science, 309(5741), pp.1688–1692 (2005). [CrossRef] [PubMed] [Google Scholar]
  4. Omari, and T. J. Hayward, Chirality-based vortex domain-wall logic gates. Physical Review Applied, 2(4), p.044001 (2014). [CrossRef] [Google Scholar]
  5. Lu, and X. R. Wang, Motion of transverse domain walls in thin magnetic nanostripes under transverse magnetic fields. Journal of Applied Physics, 107(8) (2010). [Google Scholar]
  6. Boulle, G. Malinowski, and M. Kläui, Current-induced domain wall motion in nanoscale ferromagnetic elements. Materials Science and Engineering: R: Reports, 72(9), pp.159–187 (2011). [CrossRef] [Google Scholar]
  7. Yu, S. Shi, R. Peng, R. Guo, Y. Qiu, G. Wu, Y. Li, M. Zhu, and H. Zhou, Strain-driven magnetic domain wall dynamics controlled by voltage in multiferroic heterostructures. Journal of Magnetism and Magnetic Materials, 552, p.169229 (2022). [CrossRef] [Google Scholar]
  8. Donges, N. Grimm, F. Jakobs, S. Selzer, U. Ritzmann, U. Atxitia, and U. Nowak, Unveiling domain wall dynamics of ferrimagnets in thermal magnon currents: Competition of angular momentum transfer and entropic torque. Physical Review Research, 2(1), p.013293 (2020). [CrossRef] [Google Scholar]
  9. Berger, Low‐field magnetoresistance and domain drag in ferromagnets. Journal of Applied Physics, 49(3), pp.2156–2161 (1978). [CrossRef] [Google Scholar]
  10. Berger, Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. Journal of Applied Physics, 55(6), pp.1954–1956 (1984). [CrossRef] [Google Scholar]
  11. Kläui, H. Ehrke, U. Rüdiger, T. Kasama, R. E. Dunin-Borkowski, D. Backes, L.J. Heyderman, C.A. Vaz, J.A.C. Bland, G. Faini, and E. Cambril, Direct observation of domain-wall pinning at nanoscale constrictions. Applied Physics Letters, 87(10) (2005). [CrossRef] [Google Scholar]
  12. L.K. Bogart, D. Atkinson, K. O’Shea, D. McGrouther, and S. McVitie, Dependence of domain wall pinning potential landscapes on domain wall chirality and pinning site geometry in planar nanowires. Physical Review B—Condensed Matter and Materials Physics, 79(5), p.054414 (2009). [CrossRef] [Google Scholar]
  13. Sander, R. Skomski, C. Schmidthals, A. Enders, and J. Kirschner, 1996. Film stress and domain wall pinning in sesquilayer iron films on W (110). Physical review letters, 77(12), p.2566. [CrossRef] [PubMed] [Google Scholar]
  14. Barman, A. Ganguly, and A. Barman, March. Configuration and polarization dependent transverse domain wall motion and domain wall switching in ferromagnetic nanowire. In Spin (Vol. 3, No. 01, p. 1350001). World Scientific Publishing Company (2013). [Google Scholar]
  15. Yuan, H.Y. and X. R. Wang, Domain wall pinning in notched nanowires. Physical Review B, 89(5), p.054423 (2014). [CrossRef] [Google Scholar]
  16. Hwang, I.S., C. K. Fang, and S. H. Chang, Effects of boundaries and point defects on energetics and dynamics of domain walls. Physical Review B—Condensed Matter and Materials Physics, 83(13), p.134119 (2011). [CrossRef] [Google Scholar]
  17. Cayssol, F., Ravelosona, D., C. Chappert, J. Ferré, and J.P. Jamet, Domain wall creep in magnetic wires. Physical review letters, 92(10), p.107202 (2004). [CrossRef] [PubMed] [Google Scholar]
  18. Goolaup, M. Ramu, C. Murapaka, and W.S. Lew, Transverse domain wall profile for spin logic applications. Scientific reports, 5(1), p.9603 (2015). [CrossRef] [PubMed] [Google Scholar]
  19. Wiele, L. Laurson, and G. Durin, Effect of disorder on transverse domain wall dynamics in magnetic nanostrips. Physical Review B—Condensed Matter and Materials Physics, 86(14), p.144415 (2012). [CrossRef] [Google Scholar]
  20. Donahue, D. G. Porter, OOMMF User’s Guide Version 1.0, Interagency Report NISTIR 6376, [Online], National Institute of Standard and Technology, Gaithersburg, MD, http://math.nist.gov/oommf (1999). [Google Scholar]
  21. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhysics Letters, 69(6), p.990 (2005). [CrossRef] [Google Scholar]
  22. Sen, and S. Barman, Optimization of Spin-Polarized Current Induced Domain Wall Velocity in a Magnetic Nano Stripe Using Sinc Pulse—A Computational Study. Physics of the Solid State, 66(8), pp.235–244 (2024). [CrossRef] [Google Scholar]
  23. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, and G. Gaudin,. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature materials, 10(6), pp.419–423 (2011). [CrossRef] [PubMed] [Google Scholar]
  24. Hayashi, L. Thomas, C. Rettner, R. Moriya, Y.B. Bazaliy, and S.S. Parkin, Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Physical review letters, 98(3), p.037204 (2007). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.