Open Access
Issue |
EPJ Web Conf.
Volume 325, 2025
International Conference on Advanced Physics for Sustainable Future: Innovations and Solutions (IEMPHYS-24)
|
|
---|---|---|
Article Number | 01018 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/epjconf/202532501018 | |
Published online | 05 May 2025 |
- IDF Diabetes Atlas (2021), 10th edition. https://diabetesatlas.org/atlas/tenth-edition/. [Google Scholar]
- Y. Khader, A. Batieha, H. Jaddou, M. El-Khateeb, K. Ajlouni, The performance of anthropometric measures to predict diabetes mellitus and hypertension among adults in Jordan, BMC Public Health. 19, 1416 (2019). https://doi.org/10.1186/s12889-019-7801-2. [CrossRef] [PubMed] [Google Scholar]
- A. Awasthi, C. R. Rao, D. S. Hegde, N. K. Rao, Association between type 2 diabetes mellitus and anthropometric measurements a case control study in South India, J Prev Med Hyg. 58 (1), E56 (2017). [PubMed] [Google Scholar]
- H. E. Bays, R. H. Chapman, S. Grandy, the SHIELD Investigators’ Group, The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys, Int J Clin Pract. 61 (5), 737–747 (2007). https://doi.org/10.1111/j.1742-1241.2007.01336.x. [CrossRef] [PubMed] [Google Scholar]
- M. Ashwell, P. Gunn, S. Gibson, Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis, Obes Rev. 13, 275–286 (2012). https://doi.org/10.1111/j.1467-789X.2011.00952.x. [CrossRef] [PubMed] [Google Scholar]
- M. Ashwell, S. Gibson, Waist-to-height ratio as an indicator of ‘early health risk’: simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference, BMJ Open. 6 (3), e010159 (2016). https://doi.org/10.1136/bmjopen-2015-010159. [CrossRef] [PubMed] [Google Scholar]
- Sujata, R. Thakur, Unequal burden of equal risk factors of diabetes between different gender in India: a cross-sectional analysis, Sci Rep. 11, 22653 (2021). https://doi.org/10.1038/s41598-021-02012-9. [CrossRef] [PubMed] [Google Scholar]
- C. W. Chia, J. M. Egan, L. Ferrucci, Age-Related Changes in Glucose Metabolism, Hyperglycemia, and Cardiovascular Risk, Circ Res. 123(7), 886–904 (2018). https://doi.org/10.1161/CIRCRESAHA.118.312806. [CrossRef] [PubMed] [Google Scholar]
- A. Gelman, A. Jakulin, M. G. Pittau, Y. Su, A weakly informative default prior distribution for logistic and other regression models, Ann. Appl. Stat. 2 (4) 1360–1383 (2008). https://doi.org/10.1214/08-AOAS191. [Google Scholar]
- H. A. Chipman, E. I. George, R. E. McCulloch, BART: Bayesian Additive Regression Trees, Ann. Appl. Stat. 4 (1), 266–298 (2010). https://doi.org/10.1214/09-AOAS285. [CrossRef] [Google Scholar]
- R. Jain, D. Bhattacharya, M. Das Gupta, S. Banerjee, Lifestyle, BMI, Age and Waist-toHeight Ratio as Indicators for Type 2 Diabetes Mellitus: A Gender Based Comparative Study in Kolkata, West Bengal, India, Asian Journal of Statistical Sciences, 3 (2), 169176 (2023). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.