Open Access
Issue |
EPJ Web Conf.
Volume 326, 2025
International Conference on Functional Materials and Renewable Energies: COFMER’05 5th Edition
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 4 | |
Section | RF Energy Harvesting | |
DOI | https://doi.org/10.1051/epjconf/202532601006 | |
Published online | 21 May 2025 |
- K. Yang et al., “Advanced RF filters for wireless communications,” Chip, vol. 2, no. 4, p. 100058, Dec. 2023, doi: 10.1016/j.chip.2023.100058. [CrossRef] [Google Scholar]
- A. Aghanim, H. Chekenbah, O. Oulhaj, and R. Lasri, “QLearning Empowered Cavity Filter Tuning with Epsilon Decay Strategy,” Prog. Electromagn. Res. C, vol. 140, pp. 31–40, 2024, doi: 10.2528/PIERC23111903. [CrossRef] [Google Scholar]
- Z. Wang, S. Jin, J. Yang, X. Wu, and Y. Ou, “Real-time tuning of cavity filters by learning from human experience: A vector field approach,” in 2016 12th World Congress on Intelligent Control and Automation (WCICA), Jun. 2016, pp. 1931–1936. doi: 10.1109/WCICA.2016.7578618. [Google Scholar]
- S. Lindståh and X. Lan, “Reinforcement Learning with Imitation for Cavity Filter Tuning,” in 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Jul. 2020, pp. 1335–1340. doi: 10.1109/AIM43001.2020.9158839. [Google Scholar]
- Z. Wang and Y. Ou, “Learning Human Strategies for Tuning Cavity Filters with Continuous Reinforcement Learning,” Appl. Sci., vol. 12, no. 5, Art. no. 5, Jan. 2022, doi: 10.3390/app12052409. [Google Scholar]
- E. Sekhri, M. Tamre, and R. Kapoor, “Optimal QLearning Approach for Tuning the Cavity Filters,” in 2019 20th International Conference on Research and Education in Mechatronics (REM), May 2019, pp. 1–5. doi: 10.1109/REM.2019.8744118. [Google Scholar]
- A. Aghanim, R. Lasri, and O. Oulhaj, “Implementation of a fuzzy controller to tune the response of a waveguide cavity filter,” E-Prime - Adv. Electr. Eng. Electron. Energy, vol. 2, p. 100078, Jan. 2022, doi: 10.1016/j.prime.2022.100078. [CrossRef] [Google Scholar]
- S. Palanisamy, B. Thangaraju, O. I. Khalaf, Y. Alotaibi, and S. Alghamdi, “Design and Synthesis of Multi-Mode Bandpass Filter for Wireless Applications,” Electronics, vol. 10, no. 22, Art. no. 22, Jan. 2021, doi: 10.3390/electronics10222853. [CrossRef] [Google Scholar]
- A. K. Shakya, G. Pillai, and S. Chakrabarty, “Reinforcement learning algorithms: A brief survey,” Expert Syst. Appl., vol. 231, p. 120495, Nov. 2023, doi: 10.1016/j.eswa.2023.120495. [CrossRef] [Google Scholar]
- Q. Liu, Z. Liu, B. Xiong, W. Xu, and Y. Liu, “Deep reinforcement learning-based safe interaction for industrial human-robot collaboration using intrinsic reward function,” Adv. Eng. Inform., vol. 49, p. 101360, Aug. 2021, doi: 10.1016/j.aei.2021.101360. [CrossRef] [Google Scholar]
- Z. Wang and Y. Ou, “Learning Human Strategies for Tuning Cavity Filters with Continuous Reinforcement Learning,” Appl. Sci., vol. 12, no. 5, Art. no. 5, Jan. 2022, doi: 10.3390/app12052409. [Google Scholar]
- Md. P. Uddin, Md. A. Mamun, and Md. A. Hossain, “PCA-based Feature Reduction for Hyperspectral Remote Sensing Image Classification,” IETE Tech. Rev., vol. 38, no. 4, pp. 377–396, Jul. 2021, doi: 10.1080/02564602.2020.1740615. [CrossRef] [Google Scholar]
- S. M. Holland, “Principal Components A Na Lysi S (Pca)”. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.