Open Access
Issue
EPJ Web Conf.
Volume 326, 2025
International Conference on Functional Materials and Renewable Energies: COFMER’05 5th Edition
Article Number 01007
Number of page(s) 4
Section RF Energy Harvesting
DOI https://doi.org/10.1051/epjconf/202532601007
Published online 21 May 2025
  1. M. M. Rahman, M. S. I. Shanto, N. Sarker, T. Rani, et L. C. Paul, « A comprehensive review of wireless power transfer methods, applications, and challenges », Engineering Reports, vol. 6, no 10, p. e12951, oct. 2024, [CrossRef] [Google Scholar]
  2. R. Narayanamoorthi, A. Vimala Juliet, G. Santhoshkumar, et K. Selvakumar, « Frequency Split Elimination of Short Range Wireless Power Transfer System by Active Matching Tuning Circuit », Indian Journal of Science and Technology, vol. 9, no 42, nov. 2016, [Google Scholar]
  3. W. Jordan, A. Barakat, B. Gyawali, et R. K. Pokharel, « High-efficiency wideband inductorless platinum-band CMOS rectifier », AEU - International Journal of Electronics and Communications, vol. 193, p. 155737, mars 2025, [CrossRef] [Google Scholar]
  4. Ren, Y. J., Li, M. Y., & Chang, K. (2007). 35 GHz rectifying antenna for wireless power transmission. Electronics letters, 43(11), 602-603. [CrossRef] [Google Scholar]
  5. E. Donchev et al., « The rectenna device: From theory to practice (a review) », MRS Energy & Sustainability, vol. 1, no 1, p. 1, janv. 2014, [CrossRef] [Google Scholar]
  6. S. Ladan et K. Wu, « 35 GHz harmonic harvesting rectifier for wireless power Transmission », in 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA: IEEE, juin 2014, p. 1‑4. [Google Scholar]
  7. Rui Li et Dong Il Kim, « A New Compact Low-Pass Filter with Broad Stopband and Sharp Skirt Characteristics », in 2005 Asia-Pacific Microwave Conference Proceedings, Suzhou, China: IEEE, 2005, p. 1‑3. [Google Scholar]
  8. J.-W. Sheen, « A compact semi-lumped low-pass filter for harmonics and spurious suppression », IEEE Microw. Guid. Wave Lett., vol. 10, no 3, p. 92‑93, mars 2000, [CrossRef] [Google Scholar]
  9. Z. Wei, D. Hu, S. Yang, et H. Zhai, « A Novel Filtering Antenna with Wide Stopband ». [Google Scholar]
  10. S. Saraswat, G. Gulati, D. Bhardwaj, S. Tangri, et H. Singh, « A novel semilumped low-pass filter having finite frequency attenuation poles with defected ground structure », in 2016 IEEE Annual India Conference (INDICON), Bangalore, India: IEEE, déc. 2016, p. 1‑5. d [Google Scholar]
  11. J.-S. Hong et M. J. Lancaster, Microstrip filters for RF/microwave applications. New York: Wiley, 2001 [Google Scholar]
  12. R. Saal et E. Ulbrich, « On the Design of Filters by Synthesis », IRE Trans. Circuit Theory, vol. 5, no 4, p. 284‑327, 1958, [CrossRef] [Google Scholar]
  13. R. Keshavarz et N. Shariati, « Low Profile Metamaterial Band-Pass Filter Loaded with 4-Turn Complementary Spiral Resonator for WPT Applications », in 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK: IEEE, nov. 2020, p. 1‑4. [Google Scholar]
  14. Y. Tamura, H. Saeki, et M. Tamura, « System Design of Cavity Resonance-Enabled Wireless Power Transfer Based on Filter Design Theory », IEEE Access, vol. 12, p. 43341‑43349, 2024, [CrossRef] [Google Scholar]
  15. Jiang Y, Wei B, Heng Y, Guo X, Cao B, Jiang L. Compact superconducting lowpass filter with wide stopband. Electron Lett 2017;53(14):931–3. [CrossRef] [Google Scholar]
  16. Zhang B, Li S, Huang J. Compact lowpass filter with wide stopband using coupled rhombic stubs. Electron Lett 2015;51(3):264–6. [CrossRef] [Google Scholar]
  17. Jiang S, Xu J. Sharp roll-off planar lowpass filter with ultra-wide stopband up to 40 GHz. Electron Lett 2017;53(11):734–5. [CrossRef] [Google Scholar]
  18. Karimi G, Lalbakhsh A, Siahkamari H. Design of sharp roll-off lowpass filter with ultra wide stopband. IEEE Microwave Wirel Compon Lett 2013;23 (6):303–5. [CrossRef] [Google Scholar]
  19. Xu J, Ji Y-X, Wu W, Miao C. Design of miniaturized microstrip LPF and wideband BPF with ultra-wide stopband. IEEE Microwave Wirel Compon Lett 2013;23(8):397–9. [CrossRef] [Google Scholar]
  20. Chen C-J, Sung C-H, Su Y-D. A multi-stub lowpass filter. IEEE Microwave Wirel Compon Lett 2015;25(8):532–4. [CrossRef] [Google Scholar]
  21. Li Z, Ho SJ. Compact Microstrip Lowpass Filter with Ultra-Wide Stopband Characteristic Using Square Ring Loaded Resonators. Progr Electromagnet Res 2020;90:1–5. [CrossRef] [Google Scholar]
  22. Rekha TK, Abdulla P, Jasmine PM, Anu AR. Compact microstrip lowpass filter with high harmonics suppression using defected structures. AEU-Int J Electron Commun 2020;115:153032. [CrossRef] [Google Scholar]
  23. Shi LF, Fan ZY, Xin DJ. Miniaturized low-pass filter based on defected ground structure and compensated microstrip line. Microwave Opt Technol Lett 2020;62(3):1093–7. [CrossRef] [Google Scholar]
  24. Zhang H, Zhao J. Compact microstrip lowpass filter with ultra-wide stopband performance using radial stub loaded resonators. Progr Electromagnet Res 2018;71:199–203. [CrossRef] [Google Scholar]
  25. Lalbakhsh, A., Jamshidi, M. B., Siahkamari, H., Ghaderi, A., Golestanifar, A., Linhart, R., ... & Mandal, K. (2020). A compact lowpass filter for satellite communication systems based on transfer function analysis. AEU-International Journal of Electronics and Communications, 124, 153318. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.