Open Access
Issue |
EPJ Web Conf.
Volume 326, 2025
International Conference on Functional Materials and Renewable Energies: COFMER’05 5th Edition
|
|
---|---|---|
Article Number | 05002 | |
Number of page(s) | 4 | |
Section | Smart Energy systems: Storage, Management, Integration | |
DOI | https://doi.org/10.1051/epjconf/202532605002 | |
Published online | 21 May 2025 |
- D. Guatibonza, G. Narvaez, and L. F. Giraldo, Deep Learning for solar irradiance forecasting using multi-station data Environ. Res. Commun. (2025). https://doi.org/10.1088/25157620/adaf79 [Google Scholar]
- M. Camacho, J. Maldonado-Correa, J. Torres-Cabrera, S. Martín-Martínez, and E. Gómez-Lázaro, Short-Medium-Term Solar Irradiance Forecasting with a CEEMDAN-CNN-ATT-LSTM Hybrid Model Using Meteorological Data. Applied Sciences. 15, 1275 (2025). https://doi.org/10.3390/app15031275 [CrossRef] [Google Scholar]
- S. Serag and A. Echchelh, Technical and Economic Evaluation of Electricity Generation and Storage Using Renewable Energy Sources on Socotra Island, Yemen. Iraqi Journal of Science. 2809 (2023). https://doi.org/10.24996/ijs.2023.64.6.14 [Google Scholar]
- H. N. Nguyen, Q. T. Tran, C. T. Ngo, D. D. Nguyen, and V. Q. Tran, Solar energy prediction through machine learning models: A comparative analysis of regressor algorithms. PLoS ONE. 20, e0315955 (2025). https://doi.org/10.1371/journal.pone.0315955 [CrossRef] [PubMed] [Google Scholar]
- S. A. Syed, W. B. Chang, H. Nisar, H. N. Riaz, K. H. Yeap, and N. M. Zaber, Short-term solar irradiance forecasting using deep learning models. E3S Web Conf. 603, 03003 (2025). https://doi.org/10.1051/e3sconf/202560303003. [CrossRef] [EDP Sciences] [Google Scholar]
- Z. Wang, T. Peng, X. Zhang, J. Chen, S. Qian, and C. Zhang, Enhancing multi-step short-term solar radiation forecasting based on optimized generalized regularized extreme learning machine and multi-scale Gaussian data augmentation technique. Applied Energy. 377, 124708 (2025). https://doi.org/10.1016/j.apenergy.2024.124708. [CrossRef] [Google Scholar]
- R. Gupta, A. K. Yadav, S. K. Jha, and P. K. Pathak, Composition of feature selection techniques for improving the global horizontal irradiance estimation via machine learning models. Thermal Science and Engineering Progress. 48, 102394 (2024). https://doi.org/10.1016/j.tsep.2024.102394. [CrossRef] [Google Scholar]
- Y. Yang, Z. Tang, Z. Li, J. He, X. Shi, and Y. Zhu, Dual-Path Information Fusion and Twin Attention-Driven Global Modeling for Solar Irradiance Prediction. Sensors. 23, 7469 (2023). https://doi.org/10.3390/s23177469. [CrossRef] [Google Scholar]
- F. ALtalqi, S. Fennane, H. Mabchour, H. Kacimi, and A. Echchelh, Design monopole antenna of ultra-wideband high bandwidth and high efficiency for ground penetrating radar application. TELKOMNIKA. 22, 812 (2024). https://doi.org/10.12928/telkomnika.v22i4.25340 [CrossRef] [Google Scholar]
- F. Y. Alkhatib, J. Alsadi, M. Ramadan, R. Nasser, A. Awdallah, C. V. Chrysikopoulos, and M. Maalouf, Comparative Analysis of Deep Learning Techniques for Global Horizontal Irradiance Forecasting in U.S. Cities. Clean Energy zkae097 (2025). https://doi.org/10.1093/ce/zkae097 [Google Scholar]
- Y. Amellas, Α. Djebli, and Α. Echchelh, Levenberg-Marquardt Training Function using on MLP, RNN and Elman Neural Network to Optimize Hourly Forecasting in Tetouan City (Northern Morocco). JESTR. 13, 67 (2020). https://doi.org/10.25103/jestr.131.09. [CrossRef] [Google Scholar]
- R. Elmousaid, N. Drioui, R. Elgouri, H. Agueny, and Y. Adnani, Ultra-short-term global horizontal irradiance forecasting based on a novel and hybrid GRU-TCN model. Results in Engineering. 23, 102817 (2024). https://doi.org/10.1016/j.rineng.2024.102817. [CrossRef] [Google Scholar]
- Oliver O. Apeh and Nnamdi I. Nwulu, Machine Learning Approach for Short- and Long-Term Global Solar Irradiance Prediction. J. of Environ. & Earth. Sci. 7, 321 (2024). https://doi.org/10.30564/jees.v7i1.7060. [CrossRef] [Google Scholar]
- A. A. Imam, A. Abusorrah, M. M. A. Seedahmed, and M. Marzband, Accurate Forecasting of Global Horizontal Irradiance in Saudi Arabia: A Comparative Study of Machine Learning Predictive Models and Feature Selection Techniques. Mathematics. 12, 2600 (2024). https://doi.org/10.3390/math12162600. [CrossRef] [Google Scholar]
- S. K. Singh, S. K. Jha, and R. Gupta, Enhancing the accuracy of wind speed estimation model using an efficient hybrid deep learning algorithm. Sustain. Energy Technol. Assess. 61, 103603 (2024). https://doi.org/10.1016/j.seta.2023.103603 [Google Scholar]
- V. Gayathry, D. Kaliyaperumal, and S. R. Salkuti, Seasonal solar irradiance forecasting using artificial intelligence techniques with uncertainty analysis. Sci Rep. 14, 17945 (2024). https://doi.org/10.1038/s41598-024-68531-3. [CrossRef] [Google Scholar]
- Ü. Ağbulut, A. E. Gürel, and Y. Biçen, Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renew Sustain Energy Reviews. 135, 110114 (2021). https://doi.org/10.1016/j.rser.2020.110114. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.