Open Access
Issue |
EPJ Web Conf.
Volume 326, 2025
International Conference on Functional Materials and Renewable Energies: COFMER’05 5th Edition
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 4 | |
Section | Smart Energy systems: Storage, Management, Integration | |
DOI | https://doi.org/10.1051/epjconf/202532605003 | |
Published online | 21 May 2025 |
- A. Alhamwi, D. Kleinhans, S. Weitemeyer, et T. Vogt, « Moroccan National Energy Strategy reviewed from a meteorological perspective », Energy Strategy Rev., vol. 6, p. 39‑47, janv. 2015, https://doi.org/10.1016/j.esr.2015.02.002. [CrossRef] [Google Scholar]
- A. Nouri, M. Ait Babram, E. Elwarraki, et M. Enzili, « Moroccan wind farm potential feasibility. Case study », Energy Convers. Manag., vol. 122, p. 39‑51, août 2016, https://doi.org/10.1016/j.enconman.2016.05.058. [CrossRef] [Google Scholar]
- A. Allouhi, « Energetic, exergetic, economic and environmental (4 E) assessment process of wind power generation », J. Clean. Prod., vol. 235, p. 123‑137, oct. 2019, https://doi.org/10.1016/j.jclepro.2019.06.299. [CrossRef] [Google Scholar]
- Y. Amellas, O. E. Bakkali, A. Djebli, et A. Echchelh, « Short-term wind speed prediction based on MLP and NARX network models », Indones. J. Electr. Eng. Comput. Sci., vol. 18, no 1, p. 150, avr. 2020 https://doi.org/10.11591/ijeecs.v18.i1.pp150-157. [Google Scholar]
- Y. Wang, R. Zou, F. Liu, L. Zhang, et Q. Liu, « A review of wind speed and wind power forecasting with deep neural networks », Appl. Energy, vol. 304, p. 117766, déc. 2021, https://doi.org/10.1016/j.apenergy.2021.117766. [CrossRef] [Google Scholar]
- E. Erdem et J. Shi, « ARMA based approaches for forecasting the tuple of wind speed and direction », Appl. Energy, vol. 88, no 4, p. 1405‑1414, avr. 2011, https://doi.org/10.1016/j.apenergy.2010.10.031. [CrossRef] [Google Scholar]
- Y. El Khchine, M. Sriti, et N. E. El Kadri Elyamani, « Evaluation of wind energy potential and trends in Morocco », Heliyon, vol. 5, no 6, p. e01830, juin 2019, https://doi.org/10.1016/j.heliyon.2019.e01830. [CrossRef] [PubMed] [Google Scholar]
- H. Bidaoui, I. E. Abbassi, A. E. Bouardi, et A. Darcherif, « Wind Speed Data Analysis Using Weibull and Rayleigh Distribution Functions, Case Study: Five Cities Northern Morocco », Procedia Manuf., vol. 32, p. 786‑793, 2019, https://doi.org/10.1016/j.promfg.2019.02.286. [CrossRef] [Google Scholar]
- M. Sainlez et G. Heyen, « Comparison of supervised learning techniques for atmospheric pollutant monitoring in a Kraft pulp mill », J. Comput. Appl. Math., vol. 246, p. 329‑334, juill. 2013, https://doi.org/10.1016/j.cam.2012.06.026. [CrossRef] [Google Scholar]
- Y. Zhang et Y. Hiraga, « Review of Recent Advances in Long-Term Wind Speed and Power Forecasting », 16 juin 2024, Preprints. https://doi.org/10.22541/au.171856818.83718792/v1. [Google Scholar]
- A. A. Hussein, « Derivation and Comparison of Open-loop and Closed-loop Neural Network Battery State-of-Charge Estimators », Energy Procedia, vol. 75, p. 1856‑1861, août 2015, https://doi.org/10.1016/j.egypro.2015.07.163. [CrossRef] [Google Scholar]
- Y. Zheng, W. Zhang, J. Xie, et Q. Liu, « A Water Consumption Forecasting Model by Using a Nonlinear Autoregressive Network with Exogenous Inputs Based on Rough Attributes », Water, vol. 14, no 3, p. 329, janv. 2022, https://doi.org/10.3390/w14030329. [CrossRef] [Google Scholar]
- C. Ibtissem et L. Nouredine, « A hybrid method based on conjugate gradient trained neural network and differential evolution for non linear systems identification », in 2013 International Conference on Electrical Engineering and Software Applications, Hammamet, Tunisia: IEEE, mars 2013, p. 1‑5. https://doi.org/10.1109/ICEESA.2013.6578397. [Google Scholar]
- K. Serefoglu Cabuk et al., « Chasing the objective upper eyelid symmetry formula; R2, RMSE, POC, MAE, and MSE », Int. Ophthalmol., vol. 44, no 1, p. 303, juill. 2024, https://doi.org/10.1007/s10792-024-03157-y. [CrossRef] [Google Scholar]
- Y. Amellas, S Serag, F. Loukdache, A. Djebli, et A. Echchelh, « New method for wind potential prediction using recurrent artificial neural networks », E3S Web Conf., vol. 319, p. 01111, 2021, https://doi.org/10.1051/e3sconf/202131901111 [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.