Open Access
Issue
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
Article Number 01007
Number of page(s) 10
DOI https://doi.org/10.1051/epjconf/202532801007
Published online 18 June 2025
  1. Litjens, G., Kooi, T., Bejnordi, B.E., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. [CrossRef] [PubMed] [Google Scholar]
  2. Ardila, D., Kiraly, A.P., Bharadwaj, S., et al. (2019). End-to-end lung cancer screening with three-dimensional deep learning on low-dose CT scans. Nature Medicine, 25(6), 954–961. [CrossRef] [PubMed] [Google Scholar]
  3. Shen, W., Zhou, M., Yang, F., et al. (2017). Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognition, 61, 663–673. [CrossRef] [Google Scholar]
  4. Setio, A.A.A., Traverso, A., de Bel, T., et al. (2017). Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Medical Image Analysis, 42, 1–13. [CrossRef] [PubMed] [Google Scholar]
  5. Javed, R., Abbas, T., Khan, A.H., et al. (2024). Deep learning for lungs cancer detection: A review. Artificial Intelligence Review, 57(197). https://doi.org/10.1007/sl0462-024-10807-l [CrossRef] [Google Scholar]
  6. Kumar, V., Prabha, C., Sharma, P., et al. (2024). Unified deep learning models for enhanced lung cancer prediction with ResNet-50-101 and EfficientNet-B3 using DICOM images. BMC Medical Imaging, 24(63). https://doi.org/10.1186/s12880-024-01241-4 [PubMed] [Google Scholar]
  7. Vemula, S.T., Sreevani, M., Rajarajeswari, P., Bhargavi, K., Tavares, J.M.R.S., & Alankritha, S. (2024). Deep learning techniques for lung cancer recognition. Engineering, Technology & Applied Science Research, 14(4), 14916–14922. https://doi.org/10.48084/etasr.7510 [CrossRef] [Google Scholar]
  8. Ochoa-Ornelas, R., Gudino-Ochoa, A., & Garcia-Rodriguez, J.A. (2024). A hybrid deep learning and machine learning approach with mobile-EfficientNet and Grey Wolf optimizer for lung and colon cancer histopathology classification. Cancers, 16(22), 3791. https://doi.org/10.3390/cancers16223791 [CrossRef] [PubMed] [Google Scholar]
  9. Bandopadhyay, S., & Phadke, A.C. (2022). CNN and fuzzy logic-based hybrid approach for lung cancer detection and report generation. Proceedings of the 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC), Bengaluru, India, 818–822. https://doi.org/10.1109/IIHC55949.2022.10060729 [CrossRef] [Google Scholar]
  10. Shah, A.A., Malik, H.A.M., Muhammad, A., et al. (2023). Deep learning ensemble 2D CNN approach towards the detection of lung cancer. Scientific Reports, 13(2987). https://doi.org/10.1038/s41598-023-29656-z [PubMed] [Google Scholar]
  11. Thanoon, M.A., Zulkifley, M.A., Mohd Zainuri, M.A.A., & Abdani, S.R. (2023). A review of deep learning techniques for lung cancer screening and diagnosis based on CT images. Diagnostics, 13(2617). https://doi.org/10.3390/diagnostics13162617 [CrossRef] [PubMed] [Google Scholar]
  12. Shimazaki, A., Ueda, D., Choppin, A., et al. (2022). Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method. Scientific Reports, 12(727). https://doi.org/10.1038/s41598-021-04667-w [PubMed] [Google Scholar]
  13. Wahab Sait, A.R. (2023). Lung cancer detection model using deep learning technique. Applied Sciences, 13(22), 12510. https://doi.org/10.3390/app132212510 [CrossRef] [Google Scholar]
  14. Wankhade, S., & Vigneshwari, S. (2023). A novel hybrid deep learning method for early detection of lung cancer using neural networks. Healthcare Analytics, 3, 100195. https://doi.org/10.1016/j.health.2023.100195 [CrossRef] [Google Scholar]
  15. Shatnawi, M.Q., Abuein, Q., & Al-Quraan, R. (2025). Deep learning-based approach to diagnose lung cancer using CT-scan images. Intelligence-Based Medicine, 11, 100188. https://doi.org/10.1016/j.ibmed.2024.100188 [CrossRef] [Google Scholar]
  16. Mohamed, T.I.A., Oyelade, O.N., & Ezugwu, A.E. (2023). Automatic detection and classification of lung cancer CT scans based on deep learning and Ebola optimization search algorithm. PLoS ONE, 18(8), e0285796. https://doi.org/10.1371/journal.pone.0285796 [CrossRef] [PubMed] [Google Scholar]
  17. Abunajm, S., Elsayed, N., ElSayed, Z., & Ozer, M. (2023). Deep learning approach for early-stage lung cancer detection. arXivpreprint, arXiv:2302.02456. https://arxiv.org/abs/2302.02456 [Google Scholar]
  18. Saha, A., Ganie, S.M., Pramanik, P.K.D., et al. (2024). VER-Net: A hybrid transfer learning model for lung cancer detection using CT scan images. BMC Medical Imaging, 24(120). https://doi.org/10.1186/s12880-024-01238-z [PubMed] [Google Scholar]
  19. Kasinathan, G., Jayakumar, S., & Selvakumar, S. (2022). Cloud-based lung tumor detection and stage classification using deep learning techniques. BioMed Research International, 2022(4185835). https://doi.org/10.1155/2022/4185835 [Google Scholar]
  20. Gautam, N., Basu, A., & Sarkar, R. (2024). Lung cancer detection from thoracic CT scans using an ensemble of deep learning models. Neural Computing and Applications, 36, 2459–2477. https://doi.org/10.1007/s00521-023-09130-7 [CrossRef] [Google Scholar]
  21. Nazir, I., Haq, I.U., AlQahtani, S.A., et al. (2023). Machine learning-based lung cancer detection using multiview image registration and fusion. Journal of Sensors, 2023(6683438). https://doi.org/10.1155/2023/6683438 [CrossRef] [Google Scholar]
  22. Zhang, C., Aamir, M., & Guan, Y. (2024). Enhancing lung cancer diagnosis with data fusion and mobile edge computing using DenseNet and CNN. Journal of Cloud Computing, 13(91). https://doi.org/10.1186/s13677-024-00597-w [Google Scholar]
  23. Bhattacharjee, A., Rabea, S., Bhattacharjee, A., et al. (2023). A multi-class deep learning model for early lung cancer and chronic kidney disease detection using computed tomography images. Frontiers in Oncology, 13, 1193746. https://doi.org/10.3389/fonc.2023.1193746 [CrossRef] [PubMed] [Google Scholar]
  24. Shafi, I., Din, S., Khan, A., et al. (2022). An effective method for lung cancer diagnosis from CT scan using deep learning-based support vector network. Cancers, 14(21), 5457. https://doi.org/10.3390/cancers14215457 [CrossRef] [PubMed] [Google Scholar]
  25. Hosseini, H., Monsefi, R., & Shadroo, S. (2022). Deep learning applications for lung cancer diagnosis: A systematic review. arXiv preprint, arXiv:2201.00227. https://arxiv.org/abs/2201.00227 [Google Scholar]
  26. S. Shashikala., Parveen, N., Maqbool, A., Khan, H., Alghadeer, S.K., & Singh, G. (2024). A Novel Approach for Lung Cancer Detection Using Deep Learning Algorithms. International Journal of Intelligent Systems and Applications in Engineering, 12(15s), 471–480. [Google Scholar]
  27. Wehbe, A., Dellepiane, S., & Minetti, I. (2024). Enhanced lung cancer detection and TNM staging using YOLOv8 and TNMClassifier: An integrated deep learning approach for CT imaging. IEEE Access, 12, 141414–141424. https://doi.org/10.1109/ACCESS.2024.3462629 [CrossRef] [Google Scholar]
  28. Magdy Amin, M., Ismail, A.S., & Shaheen, M.E. (2024). Multimodal non-small cell lung cancer classification using convolutional neural networks. IEEE Access, 12, 134770–134778. https://doi.org/10.1109/ACCESS.2024.3461878 [CrossRef] [Google Scholar]
  29. Vinta, S.R., Lakshmi, B., Safali, M.A., & Kumar, G.S.C. (2024). Segmentation and classification of interstitial lung diseases based on a hybrid deep learning network model. IEEE Access, 12, 50444–50458. https://doi.org/10.1109/ACCESS.2024.3383144 [CrossRef] [Google Scholar]
  30. Litjens, G., Kooi, T., Bejnordi, B.E., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. [CrossRef] [PubMed] [Google Scholar]
  31. Cao, P., Liu, H., & Li, C. (2020). The impact of class imbalance in medical datasets on deep learning models for lung cancer detection. Journal of Biomedical Informatics, 103, 103376. [Google Scholar]
  32. Setio, A.A.A., Traverso, A., de Bel, T., et al. (2017). Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Medical Image Analysis, 42, 1–13. [CrossRef] [PubMed] [Google Scholar]
  33. Selvaraju, R.R., Cogswell, M., Das, A., et al. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision, 618–626. [Google Scholar]
  34. Han, S., Mao, H., & Dally, W.J. (2015). Deep compression: Compressing deep neural networks with pruning, trained quantization, and Huffman coding. arXiv preprint arXiv:1510.00149. [Google Scholar]
  35. Rieke, N., Hancox, J., Li, W., et al. (2020). The future of digital health with federated learning. npj Digital Medicine, 3, 119. [Google Scholar]
  36. Puyol-Antön, E., Ruijsink, B., Piechnik, S.K., et al. (2021). Fairness in medical AI: Evaluating bias in deep learning-based automated segmentation of cardiac MRI. Scientific Reports, 11, 11438. [CrossRef] [PubMed] [Google Scholar]
  37. Benjamens, S., Dhunnoo, P., & Meskö, B. (2020). The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database. NPJ Digital Medicine, 3, 118. [CrossRef] [PubMed] [Google Scholar]
  38. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al. (2014). Generative adversarial networks. Advances in Neural Information Processing Systems (NeurIPS), 27, 2672–2680. [Google Scholar]
  39. Sheller, M.J., Reina, G.A., Edwards, B., et al. (2020). Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Scientific Reports, 10, 12598. [Google Scholar]
  40. Ribeiro, M.T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?" Explaining the predictions of any classifier. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 1135–1144. [Google Scholar]
  41. Gillies, R.J., Kinahan, P.E., & Hricak, H. (2016). Radiomics: Images are more than pictures, they are data. Radiology, 278(2), 563–577. [CrossRef] [PubMed] [Google Scholar]
  42. Zhang, Y., Liu, T., & Zhang, Y. (2021). Transfer learning for lung cancer classification in medical imaging: A comprehensive review. Artificial Intelligence in Medicine, 117, 102087. [CrossRef] [PubMed] [Google Scholar]
  43. Esteva, A., Kuprel, B., Novoa, R.A., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. [CrossRef] [PubMed] [Google Scholar]
  44. Han, S., Pool, J., Tran, J., & Dally, W.J. (2015). Learning both weights and connections for efficient neural networks. Advances in Neural Information Processing Systems (NeurIPS), 28, 1135–1143. [Google Scholar]
  45. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 355(6464), 447–453. [CrossRef] [PubMed] [Google Scholar]
  46. Li, X., Gu, Y., Dvornek, N.C., et al. (2020). Privacy-preserving federated brain tumor segmentation. Medical Image Analysis, 65, 101754. [Google Scholar]
  47. Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.