Open Access
Issue
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
Article Number 01009
Number of page(s) 15
DOI https://doi.org/10.1051/epjconf/202532801009
Published online 18 June 2025
  1. Harper CA, Keeffe, J.E. Diabetic retinopathy management guidelines. Expet Rev Ophthalmol 2012;7(5):417–439. [CrossRef] [Google Scholar]
  2. Vasilakos, A., Tang, Y., Yao, Y. Neural networks for computer-aided diagnosis in medicine : a review. Neurocomputing 2016;216:700–708. [CrossRef] [Google Scholar]
  3. Oliveira A, Pereira S, Silva, C.A. Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl 2018;112:229–242. [CrossRef] [Google Scholar]
  4. Budak Ü, Comert C.Z., Çibuk, M.S., Engür, A. DCCMED-Net: densely connected and concatenated multi Encoder-Decoder CNNs for retinal vessel extraction from fundus images. Med Hypotheses 2020;134 [Google Scholar]
  5. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016 [Google Scholar]
  6. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [MathSciNet] [Google Scholar]
  7. R. Gargeyaand T. Leng, "Automated identification of diabetic retinopathy using deep learning," Ophthalmology, vol. 124, no. 7, pp. 962–969, 2017. [PubMed] [Google Scholar]
  8. Ayala, A., Ortiz Figueroa, T., Fernandes, B., & Cruz, F. (2021). Diabetic retinopathy improved detection using deep learning [Google Scholar]
  9. Albahli, S., & Ahmad Hassan Yar, G.N. (2022). Automated detection of diabetic retinopathy using custom convolutional neural network. Journal of XRay Science and Technology, 30(2), 275–291. [Google Scholar]
  10. Nguyen, Q.H., Muthuraman, R., Singh, L., Sen, G., Tran, A.C., Nguyen, B.P., & Chua, M. (2020, January). Diabetic retinopathy detection using deep learning. InProceedings of the 4th international conference on machine learning and soft computing. [Google Scholar]
  11. C. Lam, D. Yi, M. Guo, and T. Lindsey, "Automated Detection of Diabetic Retinopathy using Deep Learning," AMIA Jt Summits Transl Sci Proc, vol. 2017, pp. 147–155, May 2018. [PubMed] [Google Scholar]
  12. S.N. Sangeethaa, P.U. Maheswari, "An intelligent model for blood vessel segmentation in diagnosing DR using CNN", J. Med. Syst., vol. 42, no. 10, pp. 175, Oct. 2018. [CrossRef] [PubMed] [Google Scholar]
  13. Chandrakumar T, R Kathirvel, 2016, Classifying Diabetic Retinopathy using Deep Learning Architecture, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY a. (IJERT) Volume 05, Issue 06 (June 2016). [Google Scholar]
  14. Leasher, J.L. et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: A meta-analysis from 1990 to 2010. Diabetes Care 39, 1643–1649 (2016). [CrossRef] [PubMed] [Google Scholar]
  15. Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified airlie house classification: Etdrs report number 10. Ophthalmology 98, 786–806 (1991). [CrossRef] [PubMed] [Google Scholar]
  16. Abràmoff, M.D. et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investig. Ophthalmol. Vis. Sci. 57, 5200–5206 (2016). [CrossRef] [Google Scholar]
  17. Li, T.; Gao, Y.; Wang, K.; Guo, S.; Liu, H.; Kang, H. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Inf. Sci. 2019, 501, 511–522. [CrossRef] [Google Scholar]
  18. Franklin, S.W.; Rajan, S.E. An automated retinal imaging method for the early diagnosis of diabetic retinopathy. Technol. Health Care 2013, 21, 557–569. [CrossRef] [Google Scholar]
  19. Ipp, E.; Liljenquist, D.; Bode, B.; Shah, V.N.; Silverstein, S.; Regillo, C.D.; Lim, J.I.; Sadda, S.; Domalpally, A.; Gray, G.; et al. Pivotal Evaluation of an Artificial Intelligence System for Autonomous Detection of Referrable and Vision-Threatening Diabetic Retinopathy. [Google Scholar]
  20. Umapathy, A.; Sreenivasan, A.; Nairy, D.S.; Natarajan, S.; Rao, B.N. Image Processing, Textural Feature Extraction and Transfer Learning based detection of Diabetic Retinopathy. In Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics, Singapore, 7-9 January 2019; pp. 17–21. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.