Open Access
Issue |
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/epjconf/202532801012 | |
Published online | 18 June 2025 |
- Baradaran Ghaffari, Z., Sadedel, M., Azimifar, M. et al. Enhanced positioning accuracy and stability in servo mechanisms using a rack-drive dual-motor turret system with auto-tune control. Int J Adv Manuf Technol 137, 1305–1324 (2025). https://doi.org/10.1007/s00170-025-15254-y [CrossRef] [Google Scholar]
- Zhang, Y., Ma, M., Zhong, Z. et al. Video Information-Based Liquid Rocket Engine Fault Simulation Test Method under Complex Environment. Adv. Astronaut. Sci. Technol. 7, 197–208 (2024). https://doi.org/10.1007/s42423-024-00167-x [Google Scholar]
- Dutta, S., Harrison, T., Ward, C. et al. A framework for dynamic modelling of railway track switches considering the switch blades, actuators and control systems. Railw. Eng. Sci. 32, 162–176 (2024). https://doi.org/10.1007/s40534-023-00324-2 [Google Scholar]
- Chen, X., Xu, Y., Zhang, X. et al. Study on High-Performance Gear Fatigue Life Prediction Method Based on Deep Learning Theories. JOM 77, 61–75 (2025). https://doi.org/10.1007/s11837-024-06952-1 [CrossRef] [Google Scholar]
- Lei, Y., Liu, H., Li, N. et al. Condition monitoring and fault diagnosis of industrial robots: A review. Sci. China Technol. Sci. 68, 1110301 (2025). https://doi.org/10.1007/s11431-024-2810-2 [Google Scholar]
- Awasthi, S., Singh, G. & Ahamad, N. Fault Identification in Distributed Generation System Using Shallow ANN Model. J. Inst. Eng. India Ser. B 105, 131–145 (2024). https://doi.org/10.1007/s40031-023-00942-8 [CrossRef] [Google Scholar]
- Cheng, C., Sun, X., Shao, J. et al. Just-in-time Learning-aided Nonlinear Fault Detection for Traction Systems of High-speed Trains. Int. J. Control Autom. Syst. 21, 2797–2809 (2023). https://doi.org/10.1007/s12555-022-0241-2 [Google Scholar]
- Kumar, R., Jain, A. Driving behavior analysis and classification by vehicle OBD data using machine learning. J Supercomput 79, 18800–18819 (2023). https://doi.org/10.1007/s11227-023-05364-3 [CrossRef] [Google Scholar]
- Raouf, I., Kumar, P., Khalid, S. et al. Comprehensive Analysis of Current Developments, Challenges, and Opportunities for the Health Assessment of Smart Factory. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2025). https://doi.org/10.1007/s40684-025-00694-4 [Google Scholar]
- He, L., Huang, X. & Hou, J. A Novel High-Dimensional Coupled FHN Neuron Stochastic Resonance Model and its Performance in Faults Recognition. J. Vib. Eng. Technol. 13, 6 (2025). https://doi.org/10.1007/s42417-024-01693-6 [Google Scholar]
- Tiwari, A., Kumar, S., Sharma, R.K. et al. Analysing the reliability factors of a robot utilized within an FMC comprising two machines and one robot. Int J Interact Des Manuf (2025). https://doi.org/10.1007/s12008-025-02237-2 [Google Scholar]
- Selvam, M.P., Palraj, S.K. & Madasamy, G.S. Adaptive control of a single source reduced switch MLI-based DSTATCOM for wind energy conversion system. Electr Eng 106, 5269–5290 (2024). https://doi.org/10.1007/s00202-023-02201-x [CrossRef] [Google Scholar]
- Rahimdel, M.J. Bayesian network approach for reliability analysis of mining trucks. Sci Rep 14, 3415 (2024). https://doi.org/10.1038/s41598-024-52694-0 [CrossRef] [PubMed] [Google Scholar]
- Abdulhamid, A., Kabir, S., Ghafir, I. et al. Quantitative failure analysis for IoT systems: an integrated model-based framework. Int J Syst Assur Eng Manag 16, 845867 (2025). https://doi.org/10.1007/s13198-024-02700-5 [CrossRef] [Google Scholar]
- Zhou, Z., Chen, Z. & Zhai, W. Dynamics modeling and electromechanical coupling characteristics analysis of cage induction motors. Sci. China Technol. Sci. 67, 709–724 (2024). https://doi.org/10.1007/s11431-023-2561-2 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.