Open Access
Issue
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
Article Number 01015
Number of page(s) 11
DOI https://doi.org/10.1051/epjconf/202532801015
Published online 18 June 2025
  1. Xiao, P., Yang, S., Zhang, Z. et al. Edge-assisted and energy-efficient access control for dynamic users group in smart grids. Peer-to-Peer Netw. Appl. 17, 1149–1157 (2024). https://doi.org/10.1007/s12083-024-01655-5 [Google Scholar]
  2. Ethirajan, V., Mangaiyarkarasi, S.P. An in-depth survey of latest progress in smart grids: paving the way for a sustainable future through renewable energy resources. Journal of Electrical Systems and Inf Technol 12, 9 (2025). https://doi.org/10.1186/s43067-025-00195-z [CrossRef] [Google Scholar]
  3. Al Essa, M.J.M. A review on price-driven energy management systems and demand response programs in smart grids. Environ Syst Decis 45, 7 (2025). https://doi.org/10.1007/s10669-024-09998-3 [CrossRef] [Google Scholar]
  4. Abassi, A., El Jai, M., Arid, A. et al. Modeling and Mitigating Billing Attacks in Scalable Smart Grids with Distributed and Intelligent Systems. Oper. Res. Forum 6, 17 (2025). https://doi.org/10.1007/s43069-025-00414-3 [CrossRef] [Google Scholar]
  5. Yuanjian, Z., Tianci, Z., Zhengjun, J. et al. A blockchain-based privacy-preserving data aggregation scheme with robustness in smart grids. J Supercomput 81, 675 (2025). https://doi.org/10.1007/s11227-025-07156-3 [CrossRef] [Google Scholar]
  6. Nasir, Q., Abu Talib, M., Arshad, M.A. et al. Comparison of deep learning algorithms for site detection of false data injection attacks in smart grids. Energy Inform 7, 71 (2024). https://doi.org/10.1186/s42162-024-00381-9 [CrossRef] [Google Scholar]
  7. Safari, A., Gharehbagh, H.K., Nazari-Heris, M., Zare, K. (2024). Design of a Dynamic Feedback LSTM Electricity Price Forecast of Smart Grids. In: Azad, S., Nazari-Heris, M. (eds) Artificial Intelligence in the Operation and Control of Digitalized Power Systems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-69358814 [Google Scholar]
  8. Harb, H., Hijazi, M., Brahmia, MEA. et al. An intelligent mechanism for energy consumption scheduling in smart buildings. Cluster Comput 27, 11149–11165 (2024). https://doi.org/10.1007/s10586-024-04440-4 [CrossRef] [Google Scholar]
  9. Gurjar, G., Nikose, M.D. Smart Contract Framework for Secure and Efficient P2P Energy Trading with Blockchain. J. Electr. Eng. Technol. 20, 255–269 (2025). https://doi.org/10.1007/s42835-024-02043-y [Google Scholar]
  10. Manzoor, A., Judge, M.A., Islam, S.u. et al. AHHO: Arithmetic Harris Hawks Optimization algorithm for demand side management in smart grids. Discov Internet Things 3, 3 (2023). https://doi.org/10.1007/s43926-023-00028-3 [CrossRef] [Google Scholar]
  11. Naji El Idrissi, R., Ouassaid, M. & Maaroufi, M. Game Theory Approach for Energy Consumption Scheduling of a Community of Smart Grids. J. Electr. Eng. Technol. 18, 2695–2708 (2023). https://doi.org/10.1007/s42835-023-01379-1 [Google Scholar]
  12. Ramya, R.R., Banumathi, J. An optimized approach with 128-bit key management for IoT-enabled smart grid: enhancing efficiency, security, and sustainability. Electr Eng 107, 2207–2225 (2025). https://doi.org/10.1007/s00202-024-02636-w [CrossRef] [Google Scholar]
  13. Triet, N.M. et al. (2025). Blockchain-Enhanced Energy Trading in Smart Cities and Grids: Advancements in Market Systems and Business Models. In: Jorgensen, B.N., Ma, Z.G., Wijaya, F.D., Irnawan, R., Sarjiya, S. (eds) Energy Informatics. EI.A 2024. Lecture Notes in Computer Science, vol 15272. Springer, Cham. https://doi.org/10.1007/978-3-031-74741-06 [Google Scholar]
  14. Mishra, K., Basu, S. & Maulik, U. A classification framework for demand side management in residential smart grids. Int J Data Sci Anal (2025). https://doi.org/10.1007/s41060-025-00735-w [Google Scholar]
  15. Najibi, S., Najafi, M., Mallaki, M. et al. Resilience enhancement program in smart grids by coordinating demand response and optimal reconfiguration during wildfires. Electr Eng (2024). https://doi.org/10.1007/s00202-024-02749-2 [Google Scholar]
  16. Ravinder, M., Kulkarni, V. Smart Grid Anomaly Detection Using MFDA and Dilated GRU-based Neural Networks. Smart Grids and Energy 10, 9 (2025). https://doi.org/10.1007/s40866-024-00216-2 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.