Open Access
Issue |
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
|
|
---|---|---|
Article Number | 01040 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/epjconf/202532801040 | |
Published online | 18 June 2025 |
- Y. Wang, W. Song, W. Tao, A. Liotta, D. Yang, X. Li, S. Gao, Y. Sun, W. Ge, W. Zhang et al., A systematic review on affective computing: Emotion models, databases, and recent advances. Inf. Fusion 83, 19–52, (2022). [CrossRef] [Google Scholar]
- M.N. Hasnine, H.T. Bui, T.T.T. Tran, H.T. Nguyen, G. Akçapinar, H. Ueda, Students' emotion extraction and visualization for engagement detection in online learning. Proc. Comput. Sci. 192, 3423–3431 (2021). [Google Scholar]
- A.B. Shetty, J. Rebeiro, Facial recognition using Haar cascade and LBP classifiers. Glob. Transit. Proc. 2(2), 330–335 (2021). [Google Scholar]
- A. Caroppo, A. Leone, P. Siciliano, Comparison between deep learning models and traditional machine learning approaches for facial expression recognition in ageing adults. J. Comput. Sci. Technol. 35, 1127–1146 (2020). [Google Scholar]
- D. Bhagat, A. Vakil, R.K. Gupta, A. Kumar, Facial emotion recognition (FER) using convolutional neural network (CNN). Proc. Comput. Sci. 235, 2079–2089 (2024). [Google Scholar]
- P. Naga, S.D. Marri, R. Borreo, Facial emotion recognition methods, datasets and technologies: A literature survey. Mater. Today: Proc. 80, 2824–2828 (2023). [Google Scholar]
- R.W. Sholikah, R.H. Ginasrdi, S.L.C. Nugroho, K. Ghozali, A.S. Indrawanti, Realtime facial expression recognition to enhance emotional intelligence in autism. Proc. Comput. Sci. 234, 222–229 (2024). [Google Scholar]
- D. Bhagat, A. Vakil, R.K. Gupta, A. Kumar, Facial emotion recognition (FER) using convolutional neural network (CNN). Proc. Comput Sci. 235, 2079–2089 (2024). [Google Scholar]
- S. Saxena, S. Tripathi, T.S.B. Sudarshan, An intelligent facial expression recognition system with emotion intensity classification. Cogn. Syst. Res. 74, 39–52 (2022). [Google Scholar]
- E. Bagheri, A. Bagheri, P.G. Esteban, B. Vanderborght, A novel model for emotion detection from facial muscles activity. in Robot 2019: Fourth Iberian Robotics Conference: Advances in Robotics, Volume 2, Springer, 237–249, (2020). [CrossRef] [Google Scholar]
- U. Sharma, K.N. Faisal, R.R. Sharma, K.V. Arya, Facial landmark-based human emotion recognition technique for oriented viewpoints in the presence of facial attributes. SN Comput. Sci. 4(3), 273 (2023). [Google Scholar]
- S.V.M.D. Vanamoju, M.V. Vineetha, H. Tekchandani, P. Joshi, P.K. Shukla, A. Khanna, Facial emotion recognition using YOLO based deep learning classifier. in Proc. 2024 First Int. Conf. Electron. Commun. Signal Process. (ICECSP), 1–5, (2024). [Google Scholar]
- S. Umer, R.K. Rout, C. Pero, M. Nappi, Facial expression recognition with trade-offs between data augmentation and deep learning features. J. Ambient Intell. Humaniz. Comput., 1–15 (2022). [Google Scholar]
- R. Singh, S. Saurav, T. Kumar, R. Saini, A. Vohra, S. Singh, Facial expression recognition in videos using hybrid CNN & ConvLSTM. Int. J. Inf. Technol. 15(4), 1819–1830 (2023). [Google Scholar]
- Y. Gan, J. Chen, L. Xu, Facial expression recognition boosted by soft label with a diverse ensemble. Pattern Recognit. Lett. 125, 105–112 (2019). [Google Scholar]
- A.S.A. Hans, S. Rao, A CNN-LSTM based deep neural networks for facial emotion detection in videos. Int. J. Adv. Signal Image Sci. 7(1), 11–20 (2021). [Google Scholar]
- H. Xia, C. Su, S. Song, Y. Tan, Dual-consistency constraints network for noisy facial expression recognition. Image Vis. Comput. 148, 105–141 (2024). [Google Scholar]
- R. Febrian, B.M. Halim, M. Christina, D. Ramdhan, A. Chowanda, Facial expression recognition using bidirectional LSTM-CNN. Proc. Comput. Sci. 216, 39–47 (2023). [Google Scholar]
- B. Mocanu, R. Tapu, Facial emotion recognition using video visual transformer and attention dropping. in Proc. 2023 Int. Symp. Signals Circuits Syst. (ISSCS), 1–4, (2023). [Google Scholar]
- W.S.S. Khine, P. Siritanawan, K. Kotani, Automatic peak frame selection from dynamic facial expressions. in Proc. 2021 60th Annu. Conf. Soc. Instrum. Control Eng. Japan (SICE), 1088–1093, (2021). [Google Scholar]
- P.A. Gavade, V.S. Bhat, A.B. Gavade, Learning face expression features from video using spatio-temporal feature extractor and CNN-LSTM. in Proc. 2023 Seventh Int. Conf. Image Inf. Process. (ICIIP), 46–50, (2023). [CrossRef] [Google Scholar]
- B. Yang, B. Zhang, Y. Han, B. Liu, J. Hu, Y. Jin, Vision transformer-based visual language understanding of the construction process. Alex. Eng. J. 99, 242–256 (2024). [Google Scholar]
- F. Xue, Q. Wang, Z. Tan, Z. Ma, G. Guo, Vision transformer with attentive pooling for robust facial expression recognition. IEEE Trans. Affect. Comput. 14(4), 3244–3256 (2022). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.