Open Access
Issue
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
Article Number 01041
Number of page(s) 14
DOI https://doi.org/10.1051/epjconf/202532801041
Published online 18 June 2025
  1. Wu, J., Hu, R., Xiao, Z., Chen, J., & Liu, J. (2021). Vision Transformer-based recognition of diabetic retinopathy grade. Medical Physics, 48(12), 7850–7863. https://doi.org/10.1002/mp.15312 [CrossRef] [PubMed] [Google Scholar]
  2. Mallick, S., Paul, J., Sengupta, N., & Sil, J. (2022, November). Study of different transformer based networks for glaucoma detection. In TENCON 2022-2022 IEEE Region 10 Conference (TENCON) (pp. 1–6). IEEE. DOI: 10.1109/TENCON55691.2022.9977730 [Google Scholar]
  3. Fan, R., Alipour, K., Bowd, C., Christopher, M., Brye, N., Proudfoot, J.A., … & Zangwill, L.M. (2023). Detecting glaucoma from fundus photographs using deep learning without convolutions: transformer for improved generalization. Ophthalmology science, 3(1), 100–233. https://doi.org/10.1016/j.xops.2022.100233 [CrossRef] [PubMed] [Google Scholar]
  4. Wassel, M., Hamdi, A.M., Adly, N., & Torki, M. (2022, August). Vision transformers-based classification for glaucomatous eye condition. In 2022 26th International Conference on Pattern Recognition (ICPR) (pp. 5082–5088). IEEE. DOI: 10.1109/ICPR56361.2022.9956086 [CrossRef] [Google Scholar]
  5. Hu, X., Zhang, L.X., Gao, L., Dai, W., Han, X., Lai, Y.K., & Chen, Y. (2023). Glim-net: chronic glaucoma forecast transformer for irregularly sampled sequential fundus images. IEEE Transactions on Medical Imaging, 42(6), 1875–1884. DOI: 10.1109/TMI.2023.3243692 [CrossRef] [PubMed] [Google Scholar]
  6. Zhang, Y., Li, Y., & Li, H. (2018). "A Survey on Optical Coherence Tomography (OCT) Image Analysis for Retinal Disease Detection." IEEE Access, 6, 23456–23470. [CrossRef] [Google Scholar]
  7. Silva, D.O., & Costa, P.F. (2019). "Fundus Imaging Techniques for Diabetic Retinopathy Diagnosis." Journal of Medical Imaging, 10(2), 1–12. [CrossRef] [Google Scholar]
  8. Nguyen, C., & Kim, S. (2019). "2D OCT for Retinal Imaging: Challenges and Solutions." Optics and Lasers in Engineering, 112, 85–92. [CrossRef] [Google Scholar]
  9. Lee, R., & Hussain, M. (2020). "The Role of Fundus Photography in Eye Disease Screening." Eye Health Journal, 22(4), 15–22. [Google Scholar]
  10. Garcia, G., Del Amor, R., Colomer, A., Verdü-Monedero, R., Morales-Sanchez, J., & Naranjo, V. (2021). Circumpapillary OCT-focused hybrid learning for glaucoma grading using tailored prototypical neural networks. Artificial Intelligence in Medicine, 118, 102–132. https://doi.org/10.1016/i.artmed.2021.102132 [CrossRef] [PubMed] [Google Scholar]
  11. Mitri, S., & Patel, S. (2021). "The Use of Retinal Fundus Imaging in Monitoring Diabetic Retinopathy." Diabetes Care Journal, 38(5), 56–62. [Google Scholar]
  12. Musch, D.C., & Niziol, S.I. (2011). Early detection of glaucoma: The role of new imaging techniques. Ophthalmology Clinics of North America, 24(1), 29–36. [Google Scholar]
  13. Tham, Y.C., & Li, X. (2014). Global prevalence of glaucoma and projections for 2040 and beyond: A systematic review and meta-analysis. Ophthalmology, 121(11), 2081–2090. [CrossRef] [PubMed] [Google Scholar]
  14. Ashtari-Majlan, M., & Masip, D. (2025). Spatial-aware transformer-GRU framework for enhanced glaucoma diagnosis from 3D OCT imaging. IEEE Journal of Biomedical and Health Informatics. DOI: 10.1109/JBHI.2025.3550394 [Google Scholar]
  15. Kass, M.A., & Heuer, D.K. (2012). The Glaucoma Handbook. Elsevier Health Sciences. [Google Scholar]
  16. Mandelcorn, E.D., & Faridi, K. (2021). Glaucoma and its management. American Journal of Ophthalmology, 230, 123–134. [CrossRef] [PubMed] [Google Scholar]
  17. Linde, G., Rodrigues de Souza, W. Jr, Chalakkal, R., Danesh-Meyer, H.V., O'Keeffe, B., & Chiong Hong, S. (2024). A comparative evaluation of deep learning approaches for ophthalmology. Scientific Reports, 14(1), 21829. https://doi.org/10.1038/s41598-024-72752-x [CrossRef] [PubMed] [Google Scholar]
  18. D'Souza, G., Siddalingaswamy, P.C., & Pandya, M.A. (2024). AlterNet-K: a small and compact model for the detection of glaucoma. Biomedical Engineering Letters, 14(1), 23–33. https://doi.org/10.1007/s13534-023-00307-6 [CrossRef] [PubMed] [Google Scholar]
  19. Afroze, T., Akther, S., Chowdhury, M.A., Hossain, E., Hossain, M.S., & Andersson, K. (2021, July). Glaucoma detection using inception convolutional neural network v3. In International Conference on Applied Intelligence and Informatics (pp. 17–28). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-82269-9_2 [Google Scholar]
  20. Singh, P.B., Singh, P., Dev, H., Tiwari, A., Batra, D., & Chaurasia, B.K. (2023). Glaucoma Classification using Light Vision Transformer. EAI Endorsed Transactions on Pervasive Health and Technology, 9. DOI: 10.4108/eetpht.9.3931 [Google Scholar]
  21. Raja, H., Hassan, T., Akram, M.U., & Werghi, N. (2020). Clinically verified hybrid deep learning system for retinal ganglion cells aware grading of glaucomatous progression. IEEE Transactions on Biomedical Engineering, 68(7), 2140–2151. DOI: 10.1109/TBME.2020.3030085 [Google Scholar]
  22. Wang, X., Chen, H., Ran, A.R., Luo, L., Chan, P.P., Tham, C.C., … & Heng, P.A. (2020). Towards multi-center glaucoma OCT image screening with semi-supervised joint structure and function multi-task learning. Medical Image Analysis, 63, 101–695. https://doi.org/10.1016/j.media.2020.101695 [CrossRef] [PubMed] [Google Scholar]
  23. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ArXiv, abs/2010.11929. https://doi.org/10.48550/arXiv.2010.11929 [Google Scholar]
  24. Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR, abs/1409.1556. https://doi.org/10.48550/arXiv.1409.1556 [Google Scholar]
  25. Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105–6114). PMLR. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.